5 resultados para Segmentation algorithms

em Scielo Saúde Pública - SP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation‑based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi‑resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Among the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, have the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical‑based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the challenges of pig farming in today's competitive market, there is factor of the product traceability that ensures, among many points, animal welfare. Vocalization is a valuable tool to identify situations of stress in pigs, and it can be used in welfare records for traceability. The objective of this work was to identify stress in piglets using vocalization, calling this stress on three levels: no stress, moderate stress, and acute stress. An experiment was conducted on a commercial farm in the municipality of Holambra, São Paulo State , where vocalizations of twenty piglets were recorded during the castration procedure, and separated into two groups: without anesthesia and local anesthesia with lidocaine base. For the recording of acoustic signals, a unidirectional microphone was connected to a digital recorder, in which signals were digitized at a frequency of 44,100 Hz. For evaluation of sound signals, Praat® software was used, and different data mining algorithms were applied using Weka® software. The selection of attributes improved model accuracy, and the best attribute selection was used by applying Wrapper method, while the best classification algorithms were the k-NN and Naive Bayes. According to the results, it was possible to classify the level of stress in pigs through their vocalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compared the cost-benefit of two algorithms, recently proposed by the Centers for Disease Control and Prevention, USA, with the conventional one, the most appropriate for the diagnosis of hepatitis C virus (HCV) infection in the Brazilian population. Serum samples were obtained from 517 ELISA-positive or -inconclusive blood donors who had returned to Fundação Pró-Sangue/Hemocentro de São Paulo to confirm previous results. Algorithm A was based on signal-to-cut-off (s/co) ratio of ELISA anti-HCV samples that show s/co ratio ³95% concordance with immunoblot (IB) positivity. For algorithm B, reflex nucleic acid amplification testing by PCR was required for ELISA-positive or -inconclusive samples and IB for PCR-negative samples. For algorithm C, all positive or inconclusive ELISA samples were submitted to IB. We observed a similar rate of positive results with the three algorithms: 287, 287, and 285 for A, B, and C, respectively, and 283 were concordant with one another. Indeterminate results from algorithms A and C were elucidated by PCR (expanded algorithm) which detected two more positive samples. The estimated cost of algorithms A and B was US$21,299.39 and US$32,397.40, respectively, which were 43.5 and 14.0% more economic than C (US$37,673.79). The cost can vary according to the technique used. We conclude that both algorithms A and B are suitable for diagnosing HCV infection in the Brazilian population. Furthermore, algorithm A is the more practical and economical one since it requires supplemental tests for only 54% of the samples. Algorithm B provides early information about the presence of viremia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our objective is to evaluate the accuracy of three algorithms in differentiating the origins of outflow tract ventricular arrhythmias (OTVAs). This study involved 110 consecutive patients with OTVAs for whom a standard 12-lead surface electrocardiogram (ECG) showed typical left bundle branch block morphology with an inferior axis. All the ECG tracings were retrospectively analyzed using the following three recently published ECG algorithms: 1) the transitional zone (TZ) index, 2) the V2 transition ratio, and 3) V2 R wave duration and R/S wave amplitude indices. Considering all patients, the V2 transition ratio had the highest sensitivity (92.3%), while the R wave duration and R/S wave amplitude indices in V2 had the highest specificity (93.9%). The latter finding had a maximal area under the ROC curve of 0.925. In patients with left ventricular (LV) rotation, the V2 transition ratio had the highest sensitivity (94.1%), while the R wave duration and R/S wave amplitude indices in V2 had the highest specificity (87.5%). The former finding had a maximal area under the ROC curve of 0.892. All three published ECG algorithms are effective in differentiating the origin of OTVAs, while the V2 transition ratio, and the V2 R wave duration and R/S wave amplitude indices are the most sensitive and specific algorithms, respectively. Amongst all of the patients, the V2 R wave duration and R/S wave amplitude algorithm had the maximal area under the ROC curve, but in patients with LV rotation the V2 transition ratio algorithm had the maximum area under the ROC curve.