89 resultados para Seed adulteration and inspection
em Scielo Saúde Pública - SP
Resumo:
In subtropical climate areas, the models and methods proposed to evaluate the chilling requirement of temperate fruit crops often do not provide satisfactory results, thus calling for the development of alternative techniques. The aim of this study was to evaluate the correlations between some phonological traits and chilling requirement for seed germination of 18 peach cultivars and one nectarine cultivar. Two experiments were installed separately for the correlation studies. In experiment 1, the phenological traits were observed in the field, while in experiment 2, the chilling requirement for 50 and 100% seed germination of each cultivar was assessed. The number of days for beginning of bloom (r = 0.70**, 0.61**) and full bloom (r = 0.72**, 0.76**) were both significantly correlated with the number of chilling units for 50% and 100% germination of seeds. The number of days for beginning of budding and dormancy break were both significantly correlated with the number of chilling units for 50% and 100% germination (r = 0.48*, 0.50*, respectively). However, the same significant effect for these phenological traits was not found between chilling units and 50% germination of seeds, as well as between chilling units and harvest dates.
Resumo:
Emergence and stand establishment of tomato (Lycopersicon lycopersicum (L.) (Karsten ex Farw) and pepper (Capsicum annus L.) seeds are often slow and erratic, particularly under stress conditions. Field emergence trials sometimes have not responded to priming in pepper. This study examined the combined effects of matriconditioning and gibberellin application on the germination and stand establishment of pepper and tomato seeds. Pepper and tomato seeds were conditioned with a solid carrier, Micro Cel E, in the presence of gibberellic acid (GA) for 1, 2 , 3 and 4 days at 15 and 25ºC. The results showed that, in all cases, even under stress conditions, the combination of matriconditioning with GA was effective in improving germination and emergence of pepper and tomato. The germination time was, in average, reduced by 2 to 3 days by primed seeds. Thus, matriconditioning, during which germination is suspended, provides an unique means to rapidly and efficiently digest the endosperm by GA-induced enzymes and reduce the mechanical restraints of endosperm thus providing energy to start and sustain embryo growth.
Resumo:
The objective of this work was to determine the effects of seed priming and sulfur application on cell membrane characteristics, seedling emergence, chlorophyll content and grain yield of soybean (Glycine max) in saline soil. A complete-block design in 4x3 factorial arrangement with three replicates was used to test four types of seed priming (water, auxin, gibberellin and non-priming) and three levels of sulfate availability (0, 70 and 140 kg ha-1 K2SO4). The soil had a silty loam texture with an electrical conductivity of 3.61 ds m-1, a pH of 8.2 and a saturation percentage of about 46%. Seed priming had significant effects on mean emergence rate (MER), emergence percentage, relative water content (RWC) of leaves, relative chlorophyll content, time of maturity, shoot length and grain yield. The highest values for these variables were observed in the priming treatments, except for the time of maturity. Sulfur application had significant effects on MER, shoot length, RWC, membrane injury index and grain yield. Priming treatments provide greater emergence rates and grain yields and interact sinergicaly with sulfur rates.
Resumo:
The objective of this work was to evaluate isolates of Trichoderma harzianum regarding biocontrol of common bean seed-borne pathogens, plant growth promotion, and rhizosphere competence. Five isolates of T. harzianum were evaluated and compared with commercial isolate (Ecotrich), Carboxin+Thiram, and an absolute control. Bean seeds of the cultivar Jalo Precoce, contaminated with Aspergillus, Cladosporium, and Sclerotinia sclerotiorum, were microbiolized with antagonists, and seed health tests were carried out. Isolates were evaluated on autoclaved substrate and in field conditions. Ten days after sowing (DAS), plant length was measured. To test rhizosphere competence, isolates were applied in boxes containing autoclaved washed sand, and root colonization was evaluated at 10 DAS, using five plants per box. The most effective isolates in the seed health tests were: CEN287 and CEN289 to control Aspergillus; the commercial isolate to control Cladosporium; and CEN287 and CEN316 to control S. sclerotiorum. Isolates CEN289 and CEN290 promoted bean growth in greenhouse and field. Seed treatment with T. harzianum reduces the incidence of Aspergillus, Cladosporium, and S. sclerotiorum in 'Jalo Precoce' common bean seeds.
Resumo:
We tested the influence of the aril on seed germination in controlled conditions and on the removal of M. champaca seeds in natural environment. Germination assays were kept at 25 ± 2 °C under continuous white light. Removal experiments were carried out in three "old" (39 to 62-years old) and three "new" (15-years old) eucalypt stands in Horto Florestal Navarro de Andrade, Rio Claro, SP. The results show that the aril inhibits the germination and the seeds exhibit a positively photoblastic reaction. We found higher seed removal in old eucalypt stands than the new ones, probably due to the higher density of rodents in the old stands. In the new stands, we found higher seed removal of arillated seeds by ants. Ants are important to remove the aril of seeds dropped by birds, not only enhancing seed germination but also preventing seed predation by rodents.
Resumo:
Physiological and biochemical aspects of assai palm during seed germination and early seedling growth were investigated. Seeds collected from plants growing in flooded and upland forests were used to determine the influence of normoxic (aerobic) and anoxic (anaerobic) conditions in germination and the initial and average time of development in the roots and shoots. After 75 days, seedlings germinated under normoxia were transferred to trays and submitted to flooding. Seed reserves (lipids, proteins, soluble sugars and starch) were monitored for quiescent and germinated seeds maintained under normoxic and anoxic conditions, as well as after 5, 10 and 20 days of seedling growth. Alcohol dehydrogenase (ADH) activity was quantified in roots and leaves of seedlings without or with flooding (partial and total). Seeds were not able to germinate under anoxia. Different strategies of storage mobilization of lipids, proteins, soluble sugars and starch were observed in seeds of each environment. ADH activity was induced by anoxia, with the highest level observed in the leaves. This study showed that, under normoxic conditions, the best developmental performance of assai palm seeds, from flooded or upland forest areas, during germination was associated with primary metabolites mobilization and seedling flooding tolerance with increased ADH activity. We conclude that the assai palm is well adapted to the anoxic conditions provoked by flooding.
Resumo:
ABSTRACTCallisthene fasciculata Mart. is a tree belonging to the Vochysiaceae family. Its wood is moderately heavy and resistant and used to make poles, beams, and other structures. The aim of this work was to evaluate seed germination and the initial growth of seedlings of C. fasciculata at different temperatures and in different substrates. Seeds were collected from fruits in the Pantanal de Miranda, Mato Grosso do Sul state, Brazil. In one experiment, the seeds were subjected to constant temperatures of 20, 25, 30 and 35 °C and to alternating temperatures of 20-30 and 25-35 °C (on paper substrate). In another experiment, the seeds were subjected to temperatures of 20 and 25 °C on three substrates (sand, vermiculite and between paper) in a germinator. The experiment had a randomized design, with four replicates of 25 seeds per treatment. The F-values obtained for germination indicated no significant effect of substrate or temperature on the final germination percentage. The analyses revealed no effect of a treatment interaction (temperature x substrate) on either germination or average germination time; however, a treatment interaction effect was observed on the germination speed index. The treatment combinations yielding the best performance were between paper substrate at 20 °C and sand substrate at 25 °C. There was a significant effect of the interaction between temperature and substrate on seedling growth, with increased root growth observed in the between paper substrate at 25 °C and increased aerial component growth in both sand at 20 °C and vermiculite at 25 °C. The between paper treatment at 25 °C yielded the greatest final seedling size. Between paper is the most recommended substrate for the production of seedlings due to its ease of handling and lower probability of contamination.
Resumo:
Laboratory and greenhouse experiments were conducted to determine the effects of drought and salinity stress, temperature, pH and planting depth on yellow sweet clover (Melilotus officinalis) germination and emergence. Base, optimum and ceiling germination temperatures were estimated as 0, 18.47 and 34.60 ºC, respectively. Seed germination was sensitive to drought stress and completely inhibited at a potential of -1 MPa, but it was tolerant to salinity. Salinity stress up to 90 mM had no effect over the M. officinalis seed germination, but the germination decreased by increasing the salt concentration. The drought and salinity required for 50% inhibition of maximum germination were 207 mM and -0.49 MPa, respectively. High percentage of seed germination (>92%) was observed at pH = 5-6 and decreased to 80% at acidic medium (pH 4) and to 42% at alkaline medium (pH 9) pH. Maximum seedling emergence occurred when the seeds were placed at 2 cm depth and decreased when increasing the depth of planting; no seed emerged from depths of 10 cm.
Resumo:
An understanding of seed germination ecology of weeds can assist in predicting their potential distribution and developing effective management strategies. Influence of environmental factors and seed size on germination and seedling emergence of Convolvulus arvensis (field bindweed) was studied in laboratory and greenhouse conditions. Germination occurred over a wide range of constant temperatures, between 15 and 40 ºC, with optimum germination between 20 and 25 ºC. Time to start germination, time to 50% germination and mean germination time increased while germination percentage and germination index decreased with an increase in temperature from 20 ºC, salinity and osmotic stress. However, germination was tolerant to low salt (25 mM) or osmotic stress (0.2 MPa), but as salinity and osmotic stress increased, germination percentage and germination index decreased. Seeds of C. arvensis placed at soil surface showed maximum emergence and decreased as seeding depth increased. Seeds of C. arvensis germinated over a wide range of pH (4 to 9) but optimum germination occurred at pH 6 to 8. Under highly alkaline and acidic pH, time to start germination, time to 50% germination and mean germination time increased while germination percentage and germination index decreased. Increase in field capacity caused decreased time to start germination, time to 50% germination and mean germination time but increased germination percentage and germination index. Bigger seeds had low time to start germination, time to 50% germination and mean germination time but high germination percentage and germination index. Smaller seeds were more sensitive to environmental factors as compared to larger or medium seeds. It can be concluded that except for pH, all environmental factors and seed sizes adversely affect C. arvensis as regards seed germination or emergence and germination or emergence traits, and larger seeds result in improved stand establishment and faster germination than small seeds, regardless of moisture stress or deeper seeding depth.
Resumo:
Abutilon theophrasti and Barnyardgrass (Echinochloa crus-galli) are major weeds that affect cropping systems worldwide. Laboratory and greenhouse studies were conducted to determine the effects of temperature, pH, water and salinity stress, and planting depth on seed germination and seedling emergence of Velvetleaf and Barnyardgrass. For Velvetleaf, the base, optimum and ceiling germination temperatures were estimated as 5, 35 and 48 ºC, respectively. Seed germination was sensitive to drought stress and completely inhibited by a potential of -0.6 MPa, but it was tolerant to salinity. Salinity stress up to 45 mM had no effect on the germination of Velvetleaf, but germination decreased with increasing salt concentration. Drought and salinity levels for 50% inhibition of maximum germination were -0.3 MPa and 110 mM, respectively. Seed germination of Velvetleaf was tolerant to a wide range of pH levels. For Barnyardgrass, the base, optimum and ceiling germination temperatures were estimated as 5, 38 and 45 ºC, respectively. Seed germination was tolerant to drought stress and completely inhibited by a potential of -1.0 MPa. Salinity stress up to 250 mM had no effect on seed germination. Drought and salinity levels for 50% inhibition of maximum germination were -0.5 MPa and 307 mM, respectively. A high percentage of seed germination was observed at pH=5 and decreased to 61.5% at acidic medium (pH 4) and to 11% at alkaline medium (pH 9). Maximum seedling emergence of Velvetleaf and Barnyardgrass occurred when the seeds were placed on the surface of the soil or at a depth of 1 cm.
Resumo:
Specific knowledge about the dormancy, germination, and emergence patterns of weed species aids the development of integrated management strategies. Laboratory studies were conducted to determine the effect of several environmental factors on seed germination and seedling emergence of Cyperus difformis. Germination of freshly harvested seeds was inhibited by darkness; however, when seeds were subsequently transferred to complete light they germinated readily. Our results showed that 2 wk of cold stratification overcome the light requirement for germination. Seeds of C. difformis were able to germinate over a broad range of temperatures (25/15, 30/20, 35/25, and 40/30 ºC day/night). The response of germination rate to temperature was described as a non-linear function. Based on model outputs, the base, the optimum and the ceiling temperatures were estimated as 14.81, 37.72 and 45 ºC, respectively. A temperature of 120 ºC for a 5 min was required to inhibit 50% of maximum germination. The osmotic potential and salinity required for 50% inhibition of maximum germination were -0.47 MPa and 135.57 mM, respectively. High percentage of seed germination (89%) was observed at pH=6 and decreased to 12% at alkaline medium (pH 9) pH. Seeds sown on the soil surface gave the greatest percentage of seedling emergence, and no seedlings emerged from seeds buried in soil at depths of 1 cm.
Resumo:
Smellmelon, an annual invasive weed of soybean production fields in the north of Iran, reproduces and spreads predominately through seed production. This makes seed bank survival and successful germination essential steps in the invasive process. To evaluate the potential of Smellmelon to invade water-stressed environments, laboratory studies were conducted to investigate the effect of desiccation and salinity at different temperatures on seed germination and seedling growth of Cucumis melo. Seeds were incubated at 25, 30, 35 and 40 ºC in the darkness in a solution (0, -0.2, -0.4, -0.6, -0.8, 1 and 1.2 MPa) of a salt (NaCl), and in a solution (0, -2, -4, -6, -8, -10, -12 bar) of PEG-6000 (Polyethylene glycol), in two separate experiments. The results showed that the highest percentage and rate of germination occurred at 35 ºC in salt concentrations of 0, -0.2, -0.4 MPa and PEG concentrations of 0, -2, -4 bar. Increasing the concentration of salt (NaCl) and PEG limited germination, seedling growth and water uptake but increased the sodium content in the seedlings. No significant difference was observed among 0, -0.2 and -0.4 MPa of NaCl and among 0, -2 and -4 bar of PEG concentration at 35 ºC. The negative effects of PEG were more than those of NaCl on germination percentage and germination rate. Increased stress levels lead to reduction of root and shoot length, and SVL of seedlings. Na+ content of seedling decreased with limited seedling growth of C. melo.
Resumo:
and glades. This species blooms throughout the year, attracting arthropods of various guilds, including herbivores, pollinators and predators. In this study, done over a two year period, we described the phenology of T. adenantha and assessed the seasonal variation in arthropod numbers of different guilds. We also determined the periods of lowest and highest seed set. T. adenantha population showed a peak in flowering in March-April (rainy season) with greater production of achenes in December-April. April and October had respectively highest and lowest number of fertilized, undamaged ovules, and this pattern is possibly related with population dynamics of pollinators and herbivores. In August, which was the period of greatest damage to the stigma (by geometrid larvae), there was a positive relationship between the proportion of unfertilized ovules and flowers with damaged stigma, suggesting that floral herbivory may affect reproduction in T. adenantha. We discuss the complex dynamics of the beneficial and harmful interactions between arthropods and the host plant.
Resumo:
Cakile maritima occurs sporadically along the southern Brazilian coast, where it is restricted to more protected sites at the base of foredunes. Somatic dimorphism in C. maritima is manifested as morphologically distinct upper and lower fruit segments (silicules). The two morphs were tested for differences in size, number of seeds, dispersal ability and natural establishment. In the C. maritima population of southern Brazil, the lower silicule has more seeds than upper silicule, and lower seeds are more likely to abort than the upper ones. Seeds from upper segments were significantly larger than those from lower ones; however, their mass ranges overlap. The mean silicule mass was not significantly different from both segments, but the silicule/seed mass ratio from upper and lower segments was significantly different. Both segments had high ability to float in sea water, more than 50% were still afloat after 70 days. Nevertheless, dispersal occurs mainly to landward due to dominant wind action. Most of the seedlings were restricted to within a one-metre radius of the mother plant, and were principally derived from lower fruit segments.
Resumo:
Among the goals of the Brazilian soybean improvement programmes, the breeding strategies for cultivars adapted to low latitudes have been included to extend crop areas and to increase production. Seeds of nine Brazilian soybean cultivars adapted to low latitudes were investigated regarding to their composition, and amino acid and antinutritional/toxic protein contents. Protein (394.5 ± 13.1 to 445.3 ± 8.0 g kg-1 dry matter) and oil (200.6 ± 1.2 to 232.3 ± 4.7 g kg-1 dry matter) contents showed low correlation to each other (r = -0.06). The total carbohydrate (141.7 ± 6.1 to 211.1 ± 15.0 g kg-1 dry matter) and ash contents (48.2 ± 4.2 to 52.2 ± 0.5 g kg-1 dry matter) were similar to data available for other soybean cultivars. All soybean cultivars presented low levels of tryptophan and sulphur amino acids. The lectin (1,152 to 147,456 HU kg-1 flour), trypsin inhibitor (34.45 ± 2.28 to 77.62 ± 2.63 g trypsin inhibited kg-1 flour), toxin (6,210 ± 134 to 34,650 ± 110 LD50 kg-1 flour) and urease (0.74 ± 0.02 to 1.22 ± 0.10 g kg¹ flour) presented variations in their contents amongst the cultivars. Compared to other soybean cultivars, urease was higher, the acute toxicity lower and the lectin and trypsin inhibitor contents similar to data available. In general, soybean cultivars showed similar biochemical composition to those developed in different geographic regions. The relevance of these findings to the agronomic features and to choice of soybean cultivars to be used as food or feed is discussed.