26 resultados para Saranac Lake Region (N.Y.)--Remote-sensing maps.
em Scielo Saúde Pública - SP
Resumo:
ABSTRACT The spatial distribution of forest biomass in the Amazon is heterogeneous with a temporal and spatial variation, especially in relation to the different vegetation types of this biome. Biomass estimated in this region varies significantly depending on the applied approach and the data set used for modeling it. In this context, this study aimed to evaluate three different geostatistical techniques to estimate the spatial distribution of aboveground biomass (AGB). The selected techniques were: 1) ordinary least-squares regression (OLS), 2) geographically weighted regression (GWR) and, 3) geographically weighted regression - kriging (GWR-K). These techniques were applied to the same field dataset, using the same environmental variables derived from cartographic information and high-resolution remote sensing data (RapidEye). This study was developed in the Amazon rainforest from Sucumbíos - Ecuador. The results of this study showed that the GWR-K, a hybrid technique, provided statistically satisfactory estimates with the lowest prediction error compared to the other two techniques. Furthermore, we observed that 75% of the AGB was explained by the combination of remote sensing data and environmental variables, where the forest types are the most important variable for estimating AGB. It should be noted that while the use of high-resolution images significantly improves the estimation of the spatial distribution of AGB, the processing of this information requires high computational demand.
Resumo:
Schistosomiasis mansoni is not just a physical disease, but is related to social and behavioural factors as well. Snails of the Biomphalaria genus are an intermediate host for Schistosoma mansoni and infect humans through water. The objective of this study is to classify the risk of schistosomiasis in the state of Minas Gerais (MG). We focus on socioeconomic and demographic features, basic sanitation features, the presence of accumulated water bodies, dense vegetation in the summer and winter seasons and related terrain characteristics. We draw on the decision tree approach to infection risk modelling and mapping. The model robustness was properly verified. The main variables that were selected by the procedure included the terrain's water accumulation capacity, temperature extremes and the Human Development Index. In addition, the model was used to generate two maps, one that included risk classification for the entire of MG and another that included classification errors. The resulting map was 62.9% accurate.
Resumo:
Field-based soil moisture measurements are cumbersome. Thus, remote sensing techniques are needed because allows field and landscape-scale mapping of soil moisture depth-averaged through the root zone of existing vegetation. The objective of the study was to evaluate the accuracy of an empirical relationship to calculate soil moisture from remote sensing data of irrigated soils of the Apodi Plateau, in the Brazilian semiarid region. The empirical relationship had previously been tested for irrigated soils in Mexico, Egypt, and Pakistan, with promising results. In this study, the relationship was evaluated from experimental data collected from a cotton field. The experiment was carried out in an area of 5 ha with irrigated cotton. The energy balance and evaporative fraction (Λ) were measured by the Bowen ratio method. Soil moisture (θ) data were collected using a PR2 - Profile Probe (Delta-T Devices Ltd). The empirical relationship was tested using experimentally collected Λ and θ values and was applied using the Λ values obtained from the Surface Energy Balance Algorithm for Land (SEBAL) and three TM - Landsat 5 images. There was a close correlation between measured and estimated θ values (p<0.05, R² = 0.84) and there were no significant differences according to the Student t-test (p<0.01). The statistical analyses showed that the empirical relationship can be applied to estimate the root-zone soil moisture of irrigated soils, i.e. when the evaporative fraction is greater than 0.45.
Resumo:
This study compares the precision of three image classification methods, two of remote sensing and one of geostatistics applied to areas cultivated with citrus. The 5,296.52ha area of study is located in the city of Araraquara - central region of the state of São Paulo (SP), Brazil. The multispectral image from the CCD/CBERS-2B satellite was acquired in 2009 and processed through the Geographic Information System (GIS) SPRING. Three classification methods were used, one unsupervised (Cluster), and two supervised (Indicator Kriging/IK and Maximum Likelihood/Maxver), in addition to the screen classification taken as field checking.. Reliability of classifications was evaluated by Kappa index. In accordance with the Kappa index, the Indicator kriging method obtained the highest degree of reliability for bands 2 and 4. Moreover the Cluster method applied to band 2 (green) was the best quality classification between all the methods. Indicator Kriging was the classifier that presented the citrus total area closest to the field check estimated by -3.01%, whereas Maxver overestimated the total citrus area by 42.94%.
Resumo:
A cross-sectional case-control study on the association between the reduced work ability and S. japonicum infection was carried out in a moderate endemic area for schistosomiasis japonica in the southern part of Dongting lake in China. A total of 120 cases with reduced work ability and 240 controls paired to the case by age, sex, occupation and without reduced work ability, participated in the study. The mean age for individuals was 37.6 years old (21-60), the ratio of male: female was 60:40, the prevalence of S. japonicum in the individuals was 28.3%. The results obtained in this study showed that the infection of S. japonicum in case and control groups was 49.2% (59/120) and 17.9% (43/240), respectively. Odds ratio for reduced work ability among those who had schistosomiasis was 4.34 (95%), confidence interval was 2.58-7.34, and among those who had S. japonicum infection (egg per gram > 100) was up to 12.67 (95%), confidence interval was 3.64-46.39. After odds ratio was adjusted by multiple logistic regression, it was confirmed that heavier intensity of S. japonicum infection and splenomegaly due to S. japonicum infection were the main risk factors for reduced work ability in the population studied.
Resumo:
INTRODUCTION: The study investigated the incidence of disease and death events among patients with paracoccidioidomycosis who were residents in the Itaipu Lake region from 2008 to 2009. METHODS: A review of patient records was conducted at the Department of Tuberculosis of the Epidemiology Center of the City of Foz do Iguaçu, Paraná. RESULTS: The results identified 102 new cases of paracoccidioidomycosis in the period described, 72 men and 30 women, and 15 deaths were recorded during the study. CONCLUSIONS: It can be concluded that the Itaipu Lake region is an endemic region.
Resumo:
The objective of this work was to evaluate the use of multispectral remote sensing for site-specific nitrogen fertilizer management. Satellite imagery from the advanced spaceborne thermal emission and reflection radiometer (Aster) was acquired in a 23 ha corn-planted area in Iran. For the collection of field samples, a total of 53 pixels were selected by systematic randomized sampling. The total nitrogen content in corn leaf tissues in these pixels was evaluated. To predict corn canopy nitrogen content, different vegetation indices, such as normalized difference vegetation index (NDVI), soil-adjusted vegetation index (Savi), optimized soil-adjusted vegetation index (Osavi), modified chlorophyll absorption ratio index 2 (MCARI2), and modified triangle vegetation index 2 (MTVI2), were investigated. The supervised classification technique using the spectral angle mapper classifier (SAM) was performed to generate a nitrogen fertilization map. The MTVI2 presented the highest correlation (R²=0.87) and is a good predictor of corn canopy nitrogen content in the V13 stage, at 60 days after cultivating. Aster imagery can be used to predict nitrogen status in corn canopy. Classification results indicate three levels of required nitrogen per pixel: low (0-2.5 kg), medium (2.5-3 kg), and high (3-3.3 kg).
Resumo:
The aim of this study was to use digital images acquired by cameras attached to a helium balloon to detect variation of the nutritional status in Brachiaria decumbens. The treatments consisted of five doses of nitrogen (0, 50, 100, 150 e 200kg ha-1) with six replications each, evaluated in a completely randomized statistical design. A remote sensing system composed of digital cameras and microcomputers was used for image acquisition, and a helium balloon lifted the cameras to the heights of 15, 20, 25 and 30m. A portable chlorophyll meter and analyses of leaf nitrogen content were used to make comparisons with data obtained by the remote sensing system. Data was acquired in two phases, in different climatic conditions. At the end of each phase, dry matter production was measured. Three vegetation indices were used to evaluate the detection of different nutritional status. The three indices were able to detect the effects of N doses. The indices constructed with the Green spectral band showed to be more efficient.
Resumo:
Major histocompatibility complex class I chain-related A (MICA) is a highly polymorphic gene located within the MHC class I region of the human genome. Expressed as a cell surface glycoprotein, MICA modulates immune surveillance by binding to its cognate receptor on natural killer cells, NKG2D, and its genetic polymorphisms have been recently associated with susceptibility to some infectious diseases. We determined whether MICA polymorphisms were associated with the high rate of Schistosoma parasitic worm infection or severity of disease outcome in the Dongting Lake region of Hunan Province, China. Polymerase chain reaction-sequence specific priming (PCR-SSP) and sequencing-based typing (SBT) were applied for high-resolution allele typing of schistosomiasis cases (N = 103, age range = 36.2-80.5 years, 64 males and 39 females) and healthy controls (N = 141, age range = 28.6-73.3 years, 73 males and 68 females). Fourteen MICA alleles and five short-tandem repeat (STR) alleles were identified among the two populations. Three (MICA*012:01/02, MICA*017 and MICA*027) showed a higher frequency in healthy controls than in schistosomiasis patients, but the difference was not significantly correlated with susceptibility to S. japonicum infection (Pc > 0.05). In contrast, higher MICA*A5 allele frequency was significantly correlated with advanced liver fibrosis (Pc < 0.05). Furthermore, the distribution profile of MICA alleles in this Hunan Han population was significantly different from those published for Korean, Thai, American-Caucasian, and Afro-American populations (P < 0.01), but similar to other Han populations within China (P > 0.05). This study provides the initial evidence that MICA genetic polymorphisms may underlie the severity of liver fibrosis occurring in schistosomiasis patients from the Dongting Lake region.
Resumo:
In visceral leishmaniasis, phlebotomine vectors are targets for control measures. Understanding the ecosystem of the vectors is a prerequisite for creating these control measures. This study endeavours to delineate the suitable locations of Phlebotomus argentipes with relation to environmental characteristics between endemic and non-endemic districts in India. A cross-sectional survey was conducted on 25 villages in each district. Environmental data were obtained through remote sensing images and vector density was measured using a CDC light trap. Simple linear regression analysis was used to measure the association between climatic parameters and vector density. Using factor analysis, the relationship between land cover classes and P. argentipes density among the villages in both districts was investigated. The results of the regression analysis indicated that indoor temperature and relative humidity are the best predictors for P. argentipes distribution. Factor analysis confirmed breeding preferences for P. argentipes by landscape element. Minimum Normalised Difference Vegetation Index, marshy land and orchard/settlement produced high loading in an endemic region, whereas water bodies and dense forest were preferred in non-endemic sites. Soil properties between the two districts were studied and indicated that soil pH and moisture content is higher in endemic sites compared to non-endemic sites. The present study should be utilised to make critical decisions for vector surveillance and controlling Kala-azar disease vectors.
Estimation of surface roughness in a semiarid region from C-band ERS-1 synthetic aperture radar data
Resumo:
In this study, we investigated the feasibility of using the C-band European Remote Sensing Satellite (ERS-1) synthetic aperture radar (SAR) data to estimate surface soil roughness in a semiarid rangeland. Radar backscattering coefficients were extracted from a dry and a wet season SAR image and were compared with 47 in situ soil roughness measurements obtained in the rocky soils of the Walnut Gulch Experimental Watershed, southeastern Arizona, USA. Both the dry and the wet season SAR data showed exponential relationships with root mean square (RMS) height measurements. The dry C-band ERS-1 SAR data were strongly correlated (R² = 0.80), while the wet season SAR data have somewhat higher secondary variation (R² = 0.59). This lower correlation was probably provoked by the stronger influence of soil moisture, which may not be negligible in the wet season SAR data. We concluded that the single configuration C-band SAR data is useful to estimate surface roughness of rocky soils in a semiarid rangeland.
Resumo:
Since different pedologists will draw different soil maps of a same area, it is important to compare the differences between mapping by specialists and mapping techniques, as for example currently intensively discussed Digital Soil Mapping. Four detailed soil maps (scale 1:10.000) of a 182-ha sugarcane farm in the county of Rafard, São Paulo State, Brazil, were compared. The area has a large variation of soil formation factors. The maps were drawn independently by four soil scientists and compared with a fifth map obtained by a digital soil mapping technique. All pedologists were given the same set of information. As many field expeditions and soil pits as required by each surveyor were provided to define the mapping units (MUs). For the Digital Soil Map (DSM), spectral data were extracted from Landsat 5 Thematic Mapper (TM) imagery as well as six terrain attributes from the topographic map of the area. These data were summarized by principal component analysis to generate the map designs of groups through Fuzzy K-means clustering. Field observations were made to identify the soils in the MUs and classify them according to the Brazilian Soil Classification System (BSCS). To compare the conventional and digital (DSM) soil maps, they were crossed pairwise to generate confusion matrices that were mapped. The categorical analysis at each classification level of the BSCS showed that the agreement between the maps decreased towards the lower levels of classification and the great influence of the surveyor on both the mapping and definition of MUs in the soil map. The average correspondence between the conventional and DSM maps was similar. Therefore, the method used to obtain the DSM yielded similar results to those obtained by the conventional technique, while providing additional information about the landscape of each soil, useful for applications in future surveys of similar areas.
Resumo:
Medium-resolution satellite images have been widely used for the identification and quantification of irrigated areas by center pivot. These areas, which present predominantly circular forms, can be easily identified by visual analyses of these images. In addition to identifying and quantifying areas irrigated by center pivot, other information that is associated to these areas is fundamental for producing cadastral maps. The goal of this work was to generate cadastral mapping of areas irrigated by center pivots in the State of Minas Gerais, Brazil, with the purpose of supplying information on irrigated agriculture. Using the satellite CBERS2B/CCD, images were used to identify and quantify irrigated areas and then associate these areas with a database containing information about: irrigated area, perimeter, municipality, path row, basin in which the pivot is located, and the date of image acquisition.3,781 center pivots systems were identified. The smallest area irrigated was 4.6 hectares and the largest one was 192.6 hectares. The total estimated value of irrigated area was 254,875 hectares. The largest number of center pivots appeared in the municipalities of Unaí and Paracatu, with 495 and 459 systems, respectively. Cadastral mapping is a very useful tool to assist and enhance information on irrigated agriculture in the State of Minas Gerais.
Resumo:
Forest cover of the Maringá municipality, located in northern Parana State, was mapped in this study. Mapping was carried out by using high-resolution HRC sensor imagery and medium resolution CCD sensor imagery from the CBERS satellite. Images were georeferenced and forest vegetation patches (TOFs - trees outside forests) were classified using two methods of digital classification: reflectance-based or the digital number of each pixel, and object-oriented. The areas of each polygon were calculated, which allowed each polygon to be segregated into size classes. Thematic maps were built from the resulting polygon size classes and summary statistics generated from each size class for each area. It was found that most forest fragments in Maringá were smaller than 500 m². There was also a difference of 58.44% in the amount of vegetation between the high-resolution imagery and medium resolution imagery due to the distinct spatial resolution of the sensors. It was concluded that high-resolution geotechnology is essential to provide reliable information on urban greens and forest cover under highly human-perturbed landscapes.
Resumo:
A 0.125 degree raster or grid-based Geographic Information System with data on tsetse, trypanosomosis, animal production, agriculture and land use has recently been developed in Togo. This paper addresses the problem of generating tsetse distribution and abundance maps from remotely sensed data, using a restricted amount of field data. A discriminant analysis model is tested using contemporary tsetse data and remotely sensed, low resolution data acquired from the National Oceanographic and Atmospheric Administration and Meteosat platforms. A split sample technique is adopted where a randomly selected part of the field measured data (training set) serves to predict the other part (predicted set). The obtained results are then compared with field measured data per corresponding grid-square. Depending on the size of the training set the percentage of concording predictions varies from 80 to 95 for distribution figures and from 63 to 74 for abundance. These results confirm the potential of satellite data application and multivariate analysis for the prediction, not only of the tsetse distribution, but more importantly of their abundance. This opens up new avenues because satellite predictions and field data may be combined to strengthen or substitute one another and thus reduce costs of field surveys.