15 resultados para Salinity of irrigation water
em Scielo Saúde Pública - SP
Resumo:
In the State of Rio Grande do Sul, Brazil, flooded rice fields using Patos Lagoon as the source of water for irrigation are subject to be damaged by salinity, since this source is bound to the sea on its southern end. The sensitivity of rice is variable during plant development, being higher in the seedling and reproductive periods. However, there is not enough information about the behavior of plants under salt stress during the course of its development, especially in the vegetative stage. This study evaluated the effect of different levels of salinity of irrigation water on the salinity of soil solution over time and on some plant attributes, during the vegetative stage of rice. The study was conducted in a greenhouse, where seeds of the variety IRGA 424 were sown in pots and irrigated with water with electrical conductivity (ECi) levels of: 0.3, 0.75, 1.5, 3.0 and 4.5 dS m-1; from the tillering initiation (V4) until the panicle initiation (PI). The evaluations made were the electrical conductiviy of soil solution (ECe), the dry biomass of plants and stems, tillering, height and the transpiration of plants. The ECe increased with the ECi over time, and was determined by water transpiration flux in pots. The ECe values at the end of the experiment were high and, in most cases, higher than the critical values for flooded rice. The growth attributes of rice were negatively affected from ECi of 2.0 dS m-1 and ECe of 4.0 dS m-1.
Resumo:
One way of classifying water quality is by means of indices, in which a series of parameters analyzed are joined a single value, facilitating the interpretation of extensive lists of variables or indicators, underlying the classification of water quality. The objective of this study was to develop a statistically based index to classify water according to the Irrigation Water Quality Index (IWQI), to evaluate the ionic composition of water for use in irrigation and classify it by its source. For this purpose, the database generated during the Technology Generation and Adaptation (GAT) program was used, in which, as of 1988, water samples were collected monthly from water sources in the states of Paraíba, Rio Grande do Norte and Ceará. To evaluate water quality, the electrical conductivity (EC) of irrigation water was taken as a reference, with values corresponding to 0.7 dS m-1. The chemical variables used in this study were: pH, EC, Ca, Mg, Na, K, Cl, HCO3, CO3, and SO4. The data of all characteristics evaluated were standardized and data normality was confirmed by Lilliefors test. Then the irrigation water quality index was determined by an equation that relates the standardized value of the variable with the number of characteristics evaluated. Thus, the IWQI was classified based on indices, considering normal distribution. Finally, these indices were subjected to regression analysis. The method proposed for the IWQI allowed a satisfactory classification of the irrigation water quality, being able to estimate it as a function of EC for the three water sources. Variation in the ionic composition was observed among the three sources and within a single source. Although the water quality differed, it was good in most cases, with the classification IWQI II.
Resumo:
The objective of this study consisted on mapping the use and soil occupation and evaluation of the quality of irrigation water used in Salto do Lontra, in the state of Paraná, Brazil. Images of the satellite SPOT-5 were used to perform the supervised classification of the Maximum Likelihood algorithm - MAXVER, and the water quality parameters analyzed were pH, EC, HCO3-, Cl-, PO4(3-), NO3-, turbidity, temperature and thermotolerant coliforms in two distinct rainfall periods. The water quality data were subjected to statistical analysis by the techniques of PCA and FA, to identify the most relevant variables in assessing the quality of irrigation water. The characterization of soil use and occupation by the classifier MAXVER allowed the identification of the following classes: crops, bare soil/stubble, forests and urban area. The PCA technique applied to irrigation water quality data explained 53.27% of the variation in water quality among the sampled points. Nitrate, thermotolerant coliforms, temperature, electrical conductivity and bicarbonate were the parameters that best explained the spatial variation of water quality.
Resumo:
The use of saline water and the reuse of drainage water for irrigation depend on long-term strategies that ensure the sustainability of socio-economic and environmental impacts of agricultural systems. In this study, it was evaluated the effects of irrigation with saline water in the dry season and fresh water in the rainy season on the soil salt accumulation yield of maize and cowpea, in a crop rotation system. The experiment was conducted in the field, using a randomized complete block design, with five replications. The first crop was installed during the dry season of 2007, with maize irrigated with water of different salinities (0.8, 2.2, 3.6 and 5.0 dS m-1). The maize plants were harvested at 90 days after sowing (DAS), and vegetative growth, dry mass of 1000 seeds and grain yield were evaluated. The same plots were utilized for the cultivation of cowpea, during the rainy season of 2008. At the end of the crop, cycle plants of this species were harvested, being evaluated the vegetative growth and plant yield. Soil samples were collected before and after maize and cowpea cultivation. The salinity of irrigation water above 2.2 dS m-1 reduced the yield of maize during the dry season. The high total rainfall during the rainy season resulted in leaching of salts accumulated during cultivation in the dry season, and eliminated the possible negative effects of salinity on cowpea plants. However, this crop showed atypical behavior with a significant proportion of vegetative mass and low pod production, which reduced the efficiency of this strategy of crop rotation under the conditions of this study.
Resumo:
ABSTRACT Large salty areas in the Brazilian semi-arid region have limited farming in Northeastern Brazil. One example is the sugar cane cultivation, which reinforces the need of selecting varieties that are more tolerant to salinity. The objective of this study was to evaluate the effect of salinity on growth of ten varieties of sugar cane. The experiment was conducted in a greenhouse, set in the experimental field of Embrapa Semiárido, in Petrolina, Pernambuco State. The experimental design was randomized blocks arranged in a 6 X 10 factorial arrangement, comprised of six levels of salinity (0, 1.0, 2.0, 4.0, 6.0 and 8.0 dS m-1) and ten sugar cane varieties (VAT 90212; RB 72454; RB 867515; Q 124; RB 961003; RB 957508; SP791011; RB 835089; RB 92579 and SP 943206). Salt levels of irrigation water were obtained by adding NaCl, CaCl2.2H2O and MgSO4.7H2O to achieve an equivalent ratio among Na:Ca:Mg of 7:2:1. Sixty days later, plant height, stem diameter (base), number of leaves, stalks and sprouts, leaf area and fresh and dry mass of the aerial part and roots were all measured. The varieties of sugar cane showed similar responses for growth reduction as soil salinity increases, being considered moderately sensitive to salinity.
Resumo:
Plug dynamics of non compensate drip tubes were evaluated, by the precipitation of moisturized whitewash [Ca(OH)2], which is used in the fertigation for the bulb pH control of the trademarks Azud, Amanco, Naandan, Netafim, Petroisa, Queen Gil, with flow rate varying between 0.4 to 3.0 L h-1 usually used in the country. For this matter, increasing doses of Ca(OH)² were applied in the irrigation water, from 0.01 g L-1 to 1.84 g L-1. The flow rate of each drip tube was measured in intervals of time initially of 7 days, later of 15 days of system operation, totaling a time of 100 days of operation, corresponding to nine applications or 432 hours. The coefficient of variation (CV), and relative rate flow (Qr) were evaluated. The results pointed differences among the evaluated emitter regarding the occurrence of the clogging, and the models G2 and G5 presented the smallest levels of flow rate variation comparing to the models G6, G7 and G9.
Resumo:
The development of new methodologies and tools that enable to determine the water content in soil is of fundamental importance to the practice of irrigation. The objective of this study was to evaluate soil matric potential using mercury tensiometer and puncture digital tensiometer, and to compare the gravimetric soil moisture values obtained by tensiometric system with gravimetric soil moisture obtained by neutron attenuation technique. Four experimental plots were maintained with different soil moisture by irrigation. Three repetitions of each type of tensiometer were installed at 0.20 m depth. Based on the soil matric potential and the soil water retention curve, the corresponding gravimetric soil moisture was determined. The data was then compared to those obtained by neutron attenuation technique. The results showed that both tensiometric methods showed no difference under soil matric potential higher than -40 kPa. However, under drier soil, when the water was replaced by irrigation, the soil matric potential of the puncture digital tensiometer was less than those of the mercury tensiometer.
Resumo:
The increasing demand for water resources accentuates the need to reduce water waste through a more appropriate irrigation management. In the particular case of irrigated coffee planting, which in recent years presented growth with the predominance of drip irrigation, the improvement of drip irrigation management techniques is a necessity. The proper management of drip irrigation depends on the knowledge of the spatial pattern of soil moisture distribution inside the wetted strip formed under the irrigation lines. In this study, grids of 24 tensiometers were used to determine the water storage within the wetted strip formed under drippers, with a 3.78 L h-1 discharge, evenly spaced by 0.4 m, subjected to two different management criteria (fixed irrigation interval and 60 kPa tension). Estimates of storage based on a one-dimensional analysis, that only considers depth variations, were compared with two-dimensional estimates. The results indicate that for high-frequency irrigation the one-dimensional analysis is not appropriate. However, under less frequent irrigation, the two-dimensional analysis is dispensable, being the one-dimensional sufficient for calculating the water volume stored in the wetted strip.
Resumo:
The aim of this study was to identify the relation between the evapotranspirometer demand and the supply of water from local rainfall, evaluating the possibility of using water excess for irrigation of Green Roofs in the State of Mato Grosso, in Brazil. The study was done using a series of historical data provided by the National Institute of Meteorology (INMET - Instituto Nacional de Meteorologia) which has official climatological stations in 12 cities and regions of the State. The evapotranspiration values were obtained by the Penman-Monteith method and by the Climatic Water Balance (CWB) by the Thornthwaite and Mather method using Available Water Capacity (AWC) of 12mm. With the CWB the excess and deficit were calculated, which were used for the estimative of the volume and area of a reservoir as a function of a collector area of a roof of 100m² and the volume of supplementary water for irrigation. With the obtained results, it was found that in most investigated regions of the State the use of green roofs is not compromised by the water deficiency. On the other hand, the use of a reservoir to accumulate the rain water excess may be impractical, because it requires a considerable area for installation and also because of the high cost of the land.
Resumo:
It was to aimed it to investigate effects of various saline water use strategies on melon production and quality of two cultivars (Cucumis melo L., Sancho - C1 and Medellín - C2. The plants were irrigated with water of low (S1 = 0.61 dS m-1) and high (S2 = 4.78 dS m-1) salinity levels, during each crop stage: S1S1S2S2 - T1; S2S1S2S2 - T2; S2S2S1S2 - T3. The 1st, 2nd, 3rd and 4th terms of these sequences correspond to initial growth, flowering, fruit ripening and harvest phenological stages, respectively. Additionally, there was irrigation rotation during all cycle, with water S1 during two days followed by S2 for one day (S1 2 dias + S2 1 dia - T4) and irrigation with non-salt water S2 during all cycle - T5. Moreover, we used as control, the irrigation water at 3.2 dS m-1 resulting from water mixture of S1 and S2 - T6 (farm used irrigation management). The experiment was carried out in Pedra Preta Farm, in Mossoró, RN, using an entire randomized block statistical design in a 6x2 subdivided plot scheme with four replications. Saline water irrigation at initial growth stage reduces leaf area and shoot dry phytomass of Sancho and Medellín melon cultivars. The irrigation by T4 provided the highest phytomass production of fruits at 48 DAS, reducing in 33% of good quality water in irrigation.
Resumo:
Tropical kudzu (Pueraria phaseoloides (Roxb.) Benth., Leguminosae: Faboideae) is native to the humid Southeastern Asia. Tropical kudzu has potential as a cover crop in regions subjected to dryness. The objective of this paper was to evaluate the effect of soil water depletion on leaflet relative water content (RWC), stomatal conductance (g) and temperature (T L) in tropical kudzu. RWC of waterstressed plants dropped from 96 to 78%, following a reduction in SWC from 0.25 to 0.17 g (H2O).g (dry soil)-1.Stomatal conductance of stressed plants decreased from 221 to 98 mmol.m-2.s-1, following the reduction in soil water content (SWC). The day after re-irrigation, g of water stressed plants was 15% lower than g of unstressed plants. Differences in T L between waterstressed and unstressed plants (deltaT L) rose linearly from 0.1 to 2.2ºC following progressive water deficit. RWC and T L of waterstressed plants paralled RWC and T L of unstressed plants the day after reirrigation. The strong decrease in SWC found in this study only induced moderate water stress in tropical kudzu. In addition, tropical kudzu recover rapidly from the induced water stress after the re-irrigation.
Resumo:
A field experiment was conducted during two years, 1990/91, in an alluvial soil, in the State of Paraíba, Brazil, to study the effect of the levels of soil-water tension, 50, 100, 200, 300, 400 and 600 kPa, at 20 cm depth, on upland cotton (Gossypium hirsutum L.r. latifolium Hutch, cv. CNPA-6H) yield. The experimental design was a complete randomized block with six treatments and four repetitions. There was an effect of the treatments on plant height, leaf area index and cotton yield, but the precocity index was not modified. Water should be applied when the soil-water tension, measured at 20 cm depth, reaches values around 200 kPa. There was a quadratic (R² = 0.893**) response of cotton yields to soil water tension, with the maximum when water was applied at 52% of soil water depletion.
Assessment of hydrochemical quality of ground water under some urban areas within sana'a secreteriat
Resumo:
Groundwater from nine wells of three different districts, located at Sana'a secretariat was analyzed for hydrochemical quality assessment. Measurements of water quality parameters including pH, EC, CO3(2-), HCO3-, Cl-, NO3-, SO4(2-), Ca2+, Mg2+, Fe3+, K+, and Na+ were carried out . Classification of the groundwater samples according to Cl, SO4(2-), CO3(2-) and HCO3-, hardness (H), total dissolved solids (TDS), base-exchange, and meteoric genesis was demonstrated. Suitability of ground water samples for irrigation and industrial uses according to sodium adsorption ration (SAR), ratio of dissolved sodium (RDS), residual sodium carbonate (RSC) and saturation index (SI) was also investigated. The results of this study showed that almost all ground water samples were of good quality that makes them suitable for drinking and domestic uses. Results also indicated that even though some of the ground water samples were suitable for irrigation purposes, almost all of them were found not be good for industrial uses. Despite all drawbacks of the sewerage system built around Sana'a secretariat at the beginning of the first decade of the third millennium, the results of this study indicate that there is scope of significant improvement in Sana'a secretariat ground water quality.
Resumo:
The objective of this study was to evaluate the effects of the application of different water depths and nitrogen and potassium doses in the quality of Tanzania grass, in the southern of the state of Tocantins. The experiment was conducted on strips of traditional sprinklers, and used, as treatments, a mixture of fertilizer combinations of N and K2O always in the ratio of 1 N:0.8 K2O. This study determined throughout the experiment: plant height (PH), the crude protein (CP) and neutral detergent fiber (NDF). The highest plant height obtained was 132.4 cm, with a fertilizer dose of 691.71 kg ha-1 in the proportion of N:0.8 K2O, in other words, 384.28 kg ha-1 of N and 307.43 kg ha-1 of K2O, and water depth of 80% of the ETc. The highest crude protein content was 12.2%, with the fertilizer dose application of 700 kg ha-1 yr-1 in the proportion of 1 N to 0.8 of K2O, in other words, 388.89 kg ha-1 of N and 311.11 kg ha-1 of K2O and absence of irrigation. The lowest level of neutral detergent fiber was 60.7% with the application of the smallest dose of fertilizer and highest water depth. It was concluded in this study that there was an increase in plant height by increasing the fertilizer dose and water depth. The crude protein content increased 5.4% in the dry season, by increasing the fertilizer dose and water depth. In the dry season, there was an increase of NDF content by 4.5% by increasing the application of fertilizer and water depth.
Resumo:
This experiment was conducted in Lavras - state of Minas Gerais (MG), Brazil, in a protected environment, and aims to estimate the irrigation depths that maximize productivity and economic returns in the cultivation of asparagus bean and analyze the economic viability of irrigation management. The experimental delineation was randomized blocks with five treatments and four replications. The treatments consisted of five drip irrigation depths: 40, 70, 100, 130 and 160% of water replacement depth up to field capacity. The depths of water that maximize productivity and economic returns were obtained from the regression model adjusted to productivity data, cost of product relations and water cost. The economic viability was achieved on the benefit/cost ratio basis. The depth with the maximum economic return was estimated in 434.4mm, with a productivity of 35,160.6kg ha-1, which is economically viable for the cultivation of asparagus bean, with a expected profitability of R$ 1.70 for every real invested.