19 resultados para SUPPORTING ELECTROLYTE
em Scielo Saúde Pública - SP
Resumo:
A differential pulse polarographic study with the objective to determine iron (III) in presense of copper (II) in a supporting electrolyte based on citrate - EDTA was made. The best experimental conditions found were a supporting electrolyte of citrate 0.25 mol L-1, EDTA 0.050 mol L-1 and KNO3 0.50 mol L-1, pH 5.00. In this media iron (III) showed a polarographic peak in -0.08 V and the copper (II) in -0.34 V, both vs. Ag/AgCl (saturated KCl). Thus, a analytical method was developed and applied to determine iron (III) in brass alloy, a matrix were copper is in large excess over iron. The results obtained showed no interference of copper in the iron determination. The value of 0.21% of iron in the sample alloy composition was obtained and the method was validated by atomic absortion and recovery test, and the results exhibited a good agreement with the proposed method.
Resumo:
The atrazine photoelectrochemical degradation has been examined in solutions containing TiO2 on immobilized films under a variety of experimental conditions. It was possible to observe that the supporting electrolyte nature affects the intensity of the photocurrent, being an indicative of the adsorption process. The disappearance of the organic molecule follows approximately a pseudo-first order kinetic. As mineralization product, NH4+ and NO3- ion have been identified. These results indicated that the formation of NH4+ ion can be associated to the effect of atrazine adsorption, due to need of potential adaptation together with a variation in the supporting electrolyte concentration.
Resumo:
The anodic voltammetric behavior of 4-chlorophenol (4-CF) in aqueous solution has been studied on a Boron-doped diamond electrode using square wave voltammetry (SWV). After optimization of the experimental conditions, 4-CF was analyzed in pure and natural waters using a Britton-Robinson buffer with pH = 6.0 as the supporting electrolyte. Oxidation occurs at 0.80 V vs Ag/AgCl in a two-electron process controlled by adsorption of the species. The detection limits obtained were 6.4 µg L-1 in pure water and 21.5 µg L-1 for polluted water taken from a local creek, respectively. The combination of square wave voltammetry and diamond electrodes is an interesting and desirable alternative for analytical determinations.
Resumo:
Electrocatalytic hydrogenation (HEC) may be compared to catalytic hydrogenation (HC). The difference between these methods is the hydrogen source: HC needs a hydrogen gas supply; HEC needs a source of protons (solvent) to be reduced at a cathode surface. HEC has presented interesting advances in the last decades due to investigation of the influence of the supporting electrolyte, co-solvent, surfactant, presence of inert gas and the composition of the electrode on the reaction. Several classes of organic compounds have been hydrogenated through HEC: olefins, ketones, aldehydes, aromatics, polyaromatics and nitro-compounds. This paper shows some details about the HEC which may be regarded as a promising technique for the hydrogenation of organic compounds both in industrial processes and in laboratories.
Resumo:
The aim of this work was to optimize the preparation of electrodes with riboflavin (RF) immobilized on a silica surface modified with niobium oxide and carbon paste. Electrode preparation was optimized employing a factorial design consisting of two levels and three factors. The electrochemical properties of immobilized RF were investigated by cyclic voltammetry. The factorial analysis was carried out analysing the current intensity (Ipa). It was possible to optimize the electrode to get the best reversibility in the redox process, i. e. the lowest separation between anodic and cathodic peak potentials and a current ratio close to unity. The concentration of supporting electrolyte has a small effect. The proportion has the highest effect and the interaction factor between proportion and mixture has also a significant effect on the current intensity.
Resumo:
The aim of this work is to present the principal properties and applications of supporting electrolytes (SE) to students, teachers and researchers interested in electrode processes. Different aspects are discussed including the importance of SE in maintaining constant the activity coefficients and the diffusion coefficients and reducing the transport number of electroactive species. Its effect on the electrochemical kinetic parameters is also presented.
Resumo:
Adsorptive stripping voltammetry carried out in a homogeneous ternary solvent composed of N,N-dimethylformamide, water and ethanol, with alpha-benzoinoxime (alphaBO) as the complexing agent for Mo(VI) and a 0.5 mol L-1 acetic acid - sodium acetate buffer as supporting electrolyte was successfully used for the determination of molybdenum in polyvitamin-polymineral tablets. Tablet samples were analyzed and the results were compared with those obtained both by graphite furnace atomic absorption and by recovery tests, with good correlations, indicating that this may be considered as an alternative procedure for routine determination of Mo(VI) in pharmaceutical samples.
Resumo:
The electrochemical applications of a CPE modified with chitosan for the determination of Cu(II) in wastewater samples using anodic stripping voltammetry are described. The best voltammetric response was observed for a paste containing 25% m/m of chitosan. A 0.10 mol L-1 NaNO3 solution (pH 6.5) as supporting electrolyte, a pre-concentration potential of -0.20 V, pre-concentration time of 270 s and a scan rate of 25 mV s-1 were selected. The calibration graph was linear in the Cu(II) concentration range from 2.0 x 10-7 to 7.4 x 10-6 mol L-1, with a detection limit of 8.3 x 10-8 mol L-1.
Resumo:
A fast analytical method for determination of hydroquinone in pharmaceutical formulations employing batch injection analysis (BIA) with amperometric detection using a boron-doped diamond electrode is described. The supporting electrolyte was a 0.1 mol L-1 H2SO4 solution (the single reagent used for analysis). The method showed good repeatability (RSD of 0.45%, n=20), wide linear range (from 10 to 2000 µmol L-1, R=0.9999), low detection limit (0.016 µmol L-1) and satisfactory recovery values (91-96%). Accuracy of the method was evaluated by comparative analyses using high-performance liquid-chromatography. The ability to replace the electronic pipette by disposable syringes (injection procedure) in BIA systems was also shown.
Resumo:
In this paper, a silica-gel-modified carbon paste electrode (Si-gel/CPE) was used to determine the anti-cancer drug emodin by anodic stripping differential pulse voltammetry (ASDPV). The effects of the silica-gel content, the pH of the supporting electrolyte, and the scan rate on the oxidation current of emodin were investigated. The oxidation currents of emodin obtained from ASDPV measurements were linearly correlated with the concentration in the range of 5.0 × 10-9 to 300.0 × 10-9 mol L-1. The limit of detection was determined to be 1.5 × 10-9 mol L-1. The current method was successfully applied to determine emodin in a knotweed root sample, with recovery rate of 92.5% to 98.3%.
Resumo:
Optimization of the main parameters of SWASV using boron-doped diamond electrode was described for the simultaneous determination of Zn, Cd, Pb and Cu free in coconut water. The values of electroanalytical parameters studied were optimized with the factorial design and center composite design. The optimized parameters for the preconcentration of metals were -1.50 V for potential, and 240 s for deposition time. For SWV, the optimized value was 11.56 mV for step potential. In addition, frequency and pulse height were defined at 100 Hz and 55 mV, respectively. Furthermore, the concentration of the supporting electrolyte (acetate buffer, pH 4.7) was optimized in 0.206 mol L-1. The optimized procedure was applied in two samples of coconut water: natural and processed. The limits of detection (LOD) obtained for Zn, Cd, Pb and Cu were 7.2; 4.4; 3.3 and 1.5 µg L-1, respectively. The concentrations of Cd and Pb were not detected. On the other hand, the values found for the concentrations of Zn and Cu were: < LOD (29 µg L-1) and (6.8 ± 0.9) µg L-1 for the natural sample; and (85.8 ± 4.2) µg L-1 and (7.7 ± 0.6) µg L-1 for the processed sample, respectively.
Resumo:
Some aspects of the application of electrochemical impedance spectroscopy to studies of solid electrode / solution interface, in the absence of faradaic processes, are analysed. In order to perform this analysis, gold electrodes with (111) and (210) crystallographic orientations in an aqueous solution containing 10 mmol dm-3 KF, as supporting electrolyte, and a pyridine concentration varying from 0.01 to 4.6 mmol dm-3, were used. The experimental data was analysed by using EQUIVCRT software, which utilises non-linear least squares routines, attributing to the solid electrode / solution interface behaviour described by an equivalent circuit with a resistance in series with a constant phase element. The results of this fitting procedure were analysed by the dependence on the electrode potential on two parameters: the pre-exponential factor, Y0, and the exponent n f, related with the phase angle shift. By this analysis it was possible to observe that the pyridine adsorption is strongly affected by the crystallographic orientation of the electrode surface and that the extent of deviation from ideal capacitive behaviour is mainly of interfacial origin.
Resumo:
An amperometric sensor was constructed, by using humic acids to immobilize Fe3+ ions on a carbon paste electrode (CPE-HA-Fe), and used for ascorbic acid (H2A) determination. The cyclic voltammogram of the electrode showed electrochemical response due to the Fe3+/Fe2+ couple at E1/2=+0.78 V vs SCE, using 0.5 mol L-1 KCl and 0.2 mol L-1 acetate/0.020 mol L-1 phosphate buffer, at pH = 5.4, as supporting electrolyte. When H2A is added to the electrolyte solution it is observed an oxidation process. The oxidation current, obtained by chronoamperommetry at +0.87 V vs SCE, is proportional to the concentration, represented by the equation I(µA) = 7.6286 [H2A] (mmol L-1) + 1.9583, r = 0.9996, for concentrations between 0.0 and 1.4 mmol L-1. The electrode showed high stability and was used for H2A determination in a natural orange juice.
Resumo:
Electrode kinetics and study of 'transition state' with applied potential in case of [M - antibiotics - cephalothin] system were reported at pH = 7.30 ± 0.01 at suitable supporting electrolyte at 25.0ºC. The M = Co or Ni and antibiotics were doxycycline, chlortetracycline, oxytetracycline, tetracycline, minocycline, amoxicillin and chloramphenicol used as primary ligands and cephalothin as secondary ligand. Kinetic parameters viz. transfer coefficient (a), degree of irreversibility (l), diffusion coefficient (D) and rate constant (k) were determined. The values of a and k varied from 0.41 to 0.59 and 2.60 X 10-3 cm s-1 to 9.67 X 10-3 cm s-1 in case of [Co - antibiotics - cephalothin] system. In case of [Ni - antibiotics - cephalothin], a and k varied from 0.41 to 0.58 and 2.34 X 10-3 cm s-1 to 9.19 X 10-3 cm s-1 respectively confirmed that transition state behaves between oxidant and reductant response to applied potential and it adjusts it self in such a way that the same is located midway between dropping mercury electrode and solution interface. The values of rate constant confirmed the quasireversible nature of electrode processes. The stability constants (logb) of complexes were also determined.
Resumo:
Electrode kinetics and complex formation of Zn(II) using doxycycline, chlortetracycline, oxytetracycline, tetracycline, minocycline, amoxicillin, chloramphenicol and cephaloglycin were reported at pH = 7.30 ± 0.01 in = 1.0 molL-1 NaClO4 used as supporting electrolyte at 25.0°C. Kinetic parameters viz. transfer coefficient (α), degree of irreversibility (λ) and rate constant (k) were determined. The study showed that 'Transition state' behaves between reactant (O) and product (R) response to applied potential. The stability constants varied from 2.14 to 10.31 showing that these drugs or their complexes could be used against Zn toxicity.