9 resultados para SUBSTITUTED 2
em Scielo Saúde Pública - SP
Resumo:
The 2,2'-bipyridine has been entitled as the most widely used ligand. Nowadays there is a large variety of known molecules comprising at least two 2,2'-bipyridine units and the number of applications in many areas such as catalysis, new materials, optoeletronics and electrochemistry have increased very much in the past decades. Nevertheless, there is no article that gives an overview of the main synthetic methods for obtaining the substituted 2,2'-bipyridines, generally non available. This article presents a synthetic discussion about the three different methods (coupling reaction, ciclo-functionalization and functionalization of the heteroaromatic rings of 2,2'-bipyridine) for preparing these heterocyclic compounds and also provides a practical and fundamental guide, for obtaining more than eighty different symmetric and unsymmetrical substituted 2,2'-bipyridines, shown in a table with the corresponding references.
Resumo:
A series of ring substituted 3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl)-2-propen-1-one derivatives were synthesized and tested for in vitro leishmanicidal activity against amastigotes of Leishmania amazonensis in axenical cultures and murine infected macrophages. Structure-activity relationships demonstrated the importance of a radical methoxy at position R3', R4' and R5'. (2E)-3-(3,4,5-trimethoxy-phenyl)-1-(3,6,7-trimethyl-1,4-dioxy-quinoxalin-2-yl)-propenone was the most active. Cytotoxicity on macrophages revealed that this product was almost six times more active than toxic.
Resumo:
A new convenient method for preparation of 2-substituted benzimidazoles and bis-benzimidazoles is presented. In this method, o-phenylenediamines were condensed with bisulfite adducts of various aldehydes and di-aldehydes under neat conditions by microwave heating. The results were also compared with results of synthesis by conventional heating under reflux. Structures of the products were confirmed by infrared, ¹H- and 13C-NMR spectroscopy. Short reaction times, good yields, easy purification of products, and mild reaction conditions are the main advantages of this method.
Resumo:
Maghemite (g-Fe2O3) is the most usually found ferrimagnetic oxide in red basalt-derived soils. The variable degrees of ionic substitution of Fe3+ for different metals (e.g. Ti4+, Al3+, Mg2+, Zn2+, and Mn2+) and non-metals in the maghemite structure influence some cristallochemical features of this iron oxide. In this study, synthetic Zn-substituted maghemites were prepared by co-precipitation in alkaline aqueous media of FeSO4.7H2O with increasing amounts of ZnSO4.7H2O to obtain the following sequence of Fe3+ for Zn2+ substitutions: 0.0, 0.025, 0.05, 0.10, 0.15, 0.20, and 0.30 mol mol-1. The objective of this work was to evaluate the cristallochemical alterations of synthetic Zn-substituted maghemites. The dark black synthetic precipitated material was heated to 250 °C during 4 h forming a brownish maghemite that was characterized by chemical analysis as well as X ray diffraction (XRD), specific surface area and mass-specific magnetic susceptibility. The isomorphic substitution levels observed were of 0.0013, 0.0297, 0.0590, 0.1145, 0.1764, 0.2292 and 0.3404 mol mol-1, with the formation of a series of maghemites from Fe2Zn0O3 to Fe(1.49)Zn(0.770)O3 . The increase in Fe3+ for Zn2+ substitution, [Zn mol mol-1] increased the dimension a0 of the cubic unit cells of the studied maghemites according to the regression equation: a0 = 0.8343 + 0.02591Zn (R² = 0.98). On the other hand, the mean crystallite dimension and mass-specific magnetic susceptibility of the studied maghemites decreased with increasing isomorphic substitution.
Resumo:
Synthetic aluminum-substituted maghemites were characterized by total chemical analysis, powder X-ray diffraction (XRD), Mössbauer spectroscopy (ME), and vibrating sample magnetometry (VSM). The aim was to determine the structural, magnetic, and hyperfine properties of γ-Fe2-xAl xO3 as the Al concentration is varied. The XRD results of the synthetic products were indexed exclusively as maghemite. Increasing Al for Fe substitution decreased the mean crystalline dimension and shifted all diffraction peaks to higher º2_2; angles. The a0 dimension of the cubic unit cell decreased with increasing Al according to the equation a o = 0.8385 - 3.63 x 10-5 Al (R²= 0.94). Most Mössbauer spectra were composed of one sextet, but at the highest substitution rate of 142.5 mmol mol-1 Al, both a doublet and sextet were obtained at 300 K. All hyperfine parameters from the sub-spectra were consistent with high-spin Fe3+ (0.2 a 0.7 mms-1) and suggested a strong superparamagnetic component associated with the doublet. The magnetic hyperfine field of the sextets decreased with the amount of Al-substitution [Bhf (T) = 49.751 - 0.1202Al; R² = 0.94] while the linewidth increased linearly. The saturation magnetization also decreased with increasing isomorphous substitution.
Resumo:
A new series of 3-chloro-1-{[2-(6-nitro-1H-indazol-1-yl)ethyl]amino}-4-(substituted phenyl)-2-azetidinones (4a-j) was synthesized in four steps from 6-nitro-1H-indazole and characterized by IR, ¹H NMR, 13C NMR, FAB-mass spectrometry and chemical methods. Compounds 4(a-j) were screened in vitro for their antibacterial, antifungal and antitubercular activities against some selected microorganism and for their antiinflammatory activity (in vivo) against albino rats (either sex). All above activities of compounds 4(a-j) showed acceptable results.
Resumo:
Colloid chemical behavior of indole dihydropyrimidines in non-aqueous solvent mixture benzene-methanol of varying composition has been investigated by viscometric measurements at 303K± 0.1. The viscosity of the system increases with the increase in concentration. The Trend Change Point (TCP) values have been determined by intersection of two straight lines, which are found to be dependent on the composition of solvent mixtures. The study confirms that the nature of synthesized compounds agglomerate formed below and above 50% benzene concentration is quite different. The viscometric data have been analyzed in terms of Einstein, Vand, Moulik and Jones-Dole equations. These well known equations have been successfully applied to explain the results of viscosity measurements and the viscometric parameters show that the behavior of compound changes in the proximity of 50% benzene concentration.
Resumo:
Apatone͐2;, a combination of menadione (2-methyl-1,4-naphthoquinone, VK3) and ascorbic acid (vitamin C, VC) is a new strategy for cancer treatment. Part of its effect on tumor cells is related to the cellular pro-oxidative imbalance provoked by the generation of hydrogen peroxide (H2O2) through naphthoquinone redox cycling. In this study, we attempted to find new naphthoquinone derivatives that would increase the efficiency of H2O2 production, thereby potentially increasing its efficacy for cancer treatment. The presence of an electron-withdrawing group in the naphthoquinone moiety had a direct effect on the efficiency of H2O2 production. The compound 2-bromo-1,4-naphthoquinone (BrQ), in which the bromine atom substituted the methyl group in VK3, was approximately 10- and 19-fold more efficient than VK3 in terms of oxygen consumption and H2O2 production, respectively. The ratio [H2O2]produced / [naphthoquinone]consumed was 68 ± 11 and 5.8 ± 0.2 (µM/µM) for BrQ and VK3, respectively, indicating a higher efficacy of BrQ as a catalyst for the autoxidation of ascorbic acid. Both VK3 and BrQ reacted with glutathione (GSH), but BrQ was the more effective substrate. Part of GSH was incorporated into the naphthoquinone, producing a nucleophilic substitution product (Q-SG). The depletion of BrQ by GSH did not prevent its redox capacity since Q-SG was also able to catalyze the production of reactive oxygen species. VK3/VC has already been submitted to clinical trials for the treatment of prostate cancer and has demonstrated promising results. However, replacement of VK3 with BrQ will open new lines of investigation regarding this approach to cancer treatment.