67 resultados para STRUCTURAL QUALITY
em Scielo Saúde Pública - SP
Resumo:
Studies of soils in Environmental Protection Areas (EPAs) are of great importance, because they are an essential component of ecosystems, directly interfering in environmental sustainability. The objective of this study was to evaluate the structural quality of soil cultivated with coffee and used as pasture in the Capituva's River microbasin, which is located in the Environmental Protection Area in Coqueiral, south of the state of Minas Gerais. Uniaxial compression test (preconsolidation test) and soil resistance to penetration were used. Undisturbed samples were taken from the surface layer (0-5 cm) of the soils in the area: a typic dystrophic Red Latosol (LVd - Oxisol), a typic eutrophic Red Argisol (PVe - Ultisol), and a typic dystrophic Haplic Cambisol (CXbd - Inceptisol). A significant linear positive correlation was observed between the results of the preconsolidation test and soil resistance to penetration. Load bearing capacity of soil could be estimated accordingly by means of penetration resistance for LVd, PVe, and CXbd. Cambisol - CXbd showed lower loading support capacity and resistance to penetration than LVd and PVe, due to the better crop management in this soil that resulted in higher physical quality which accounts for higher production and environmental sustainability.
Resumo:
Gypsum application may enhance the soil quality for plants in terms of soil chemical and physical properties. The objective of this study was to evaluate the effects of gypsum application on the structural quality of a no-tillage Red Latosol. The experiment was initiated in September 2005 in Guarapuava-PR, with gypsum applications of 0; 4; 8; and 12 Mg ha-1 on the soil surface. In November 2009, two soil blocks were sampled from the 0-0.3 m layer for visual evaluation of the soil structure quality (Sq) and to determine the aggregate-tensile strength (ATS). Soil penetration resistance (PR) and gravimetric moisture (H%) of the 0-0.300 m layer were evaluated, and soil cores were collected (layers 0.000-0.075 and 0.075-0.150 m), to determine soil bulk density (BD), total soil porosity (TP), microporosity (Mi), and macroporosity (Ma). Data were subjected to analysis of regression at 5 %. No significant effects of gypsum application on ATS and H % of aggregates were observed, but for Sq, a quadratic effect (0.000-0.075 m) and linear increase (0.075-0.150 and 0.150-0.300 m) were stated, indicating soil quality decrease, although Sq remained mostly below 3.0, with good to intermediate soil quality. Soil PR increased with gypsum, but also remained below critical levels. No effect was observed for soil H % at the moment of PR determination on the field. The gypsum applications decreased BD in the 0.075-0.150 m layer, and increased PT and Ma, while in 0.000-0.075 m some Ma was converted to Mi, without affecting PT and BD. These last results indicate a gain in soil structural quality by gypsum applications, but the higher scores of soil structure and values of soil penetration resistance, though still below thresholds, should be monitored to prevent limitations to soil use in the future.
Resumo:
Water-soluble polymers are characterized as effective flocculating agents due to their molecular features. Their application to soils with horizons with structural problems, e.g, a cohesive character, contributes to improvements in the physical quality and thus to the agricultural suitability of such soils. The purpose of this study was to evaluate the structural quality of soils with cohesive horizons of coastal tablelands in the State of Pernambuco treated with polyacrylamide (PAM) as chemical soil conditioner. To this end, three horizons (one cohesive and two non-cohesive) of a Yellow Argisol (Ultisol) were evaluated and to compare cohesive horizons, the horizon of a Yellow Latosol (Oxisol) was selected. The treatments consisted of aqueous PAM solutions (12.5; 50.0; 100.0 mg kg-1) and distilled water (control). The structural aspects of the horizons were evaluated by the stability (soil mass retained in five diameter classes), aggregate distribution per size class (mean weight diameter- MWD, geometric mean diameter - GMD) and the magnitude of the changes introduced by PAM by measuring the sensitivity index (Si). Aqueous PAM solutions increased aggregate stability in the largest evaluated diameter class of the cohesive and non-cohesive horizons, resulting in higher MWD and GMD, with highest efficiency of the 100 mg kg-1 solution. The cohesive horizon Bt1 in the Ultisol was most sensitive to the action of PAM, where highest Si values were found, but the structural quality of the BA horizon of the Oxisol was better in terms of stability and aggregate size distribution.
Resumo:
The physical quality of Amazonian soils is relatively unexplored, due to the unique characteristics of these soils. The index of soil physical quality is a widely accepted measure of the structural quality of soils and has been used to specify the structural quality of some tropical soils, as for example of the Cerrado ecoregion of Brazil. The research objective was to evaluate the physical quality index of an Amazonian dystrophic Oxisol under different management systems. Soils under five managements were sampled in Paragominas, State of Pará: 1) a 20-year-old second-growth forest (Forest); 2) Brachiaria sp pasture; 3) four years of no-tillage (NT4.); 4) eight years of no-tillage (NT8); and 5) two years of conventional tillage (CT2). The soil samples were evaluated for bulk density, macro and microporosity and for soil water retention. The physical quality index of the samples was calculated and the resulting value correlated with soil organic matter, bulk density and porosity. The surface layers of all systems were more compacted than those of the forest. The physical quality of the soil was best represented by the relations of the S index to bulk density and soil organic matter.
Resumo:
The no-till system with complex cropping sequences may improve the structural quality and carbon (C) sequestration in soils of the tropics. Thus, the objective of this study was to evaluate the effects of cropping sequences after eight years under the no-till system on the physical properties and C sequestration in an Oxisol in the municipality of Jaboticabal, Sao Paulo, Brazil. A randomized split-block design with three replications was used. The treatments were combinations of three summer cropping sequences - corn/corn (Zea mays L.) (CC), soybean/soybean (Glycine max L. Merryll) (SS), and soybean-corn (SC); and seven winter crops - corn, sunflower (Helianthus annuus L.), oilseed radish (Raphanus sativus L.), pearl millet (Pennisetum americanum (L.) Leeke), pigeon pea (Cajanus cajan (L.) Millsp), grain sorghum (Sorghum bicolor (L.) Moench), and sunn hemp (Crotalaria juncea L.). Soil samples were taken at the 0-10 cm depth after eight years of experimentation. Soil under SC and CC had higher mean weight diameter (3.63 and 3.55 mm, respectively) and geometric mean diameter (3.55 and 2.92 mm) of the aggregates compared to soil under SS (3.18 and 2.46 mm). The CC resulted in the highest soil organic C content (17.07 g kg-1), soil C stock (15.70 Mg ha-1), and rate of C sequestration (0.70 Mg ha-1 yr-1) among the summer crops. Among the winter crops, soil under pigeon pea had the highest total porosity (0.50 m³ m-3), and that under sunn hemp had the highest water stable aggregates (93.74 %). In addition, sunn hemp did not differ from grain sorghum and contained the highest soil organic C content (16.82 g kg-1) and also had the highest rate of C sequestration (0.67 Mg ha-1 yr-1). The soil resistance to penetration was the lower limit of the least limiting water range, while the upper limit was air-filled porosity for soil bulk densities higher than 1.39 kg dm-3 for all cropping sequences. Within the SC sequence, soil under corn and pigeon pea increased least limiting water range by formation of biopores because soil resistance to penetration decreased with the increase in soil bulk density.
Resumo:
The construction of a soil after surface coal mining involves heavy machinery traffic during the topographic regeneration of the area, resulting in compaction of the relocated soil layers. This leads to problems with water infiltration and redistribution along the new profile, causing water erosion and consequently hampering the revegetation of the reconstructed soil. The planting of species useful in the process of soil decompaction is a promising strategy for the recovery of the soil structural quality. This study investigated the influence of different perennial grasses on the recovery of reconstructed soil aggregation in a coal mining area of the Companhia Riograndense de Mineração, located in Candiota-RS, which were planted in September/October 2007. The treatments consisted of planting: T1- Cynodon dactylon cv vaquero; T2 - Urochloa brizantha; T3 - Panicum maximun; T4 - Urochloa humidicola; T5 - Hemarthria altissima; T6 - Cynodon dactylon cv tifton 85. Bare reconstructed soil, adjacent to the experimental area, was used as control treatment (T7) and natural soil adjacent to the mining area covered with native vegetation was used as reference area (T8). Disturbed and undisturbed soil samples were collected in October/2009 (layers 0.00-0.05 and 0.10-0.15 m) to determine the percentage of macro- and microaggregates, mean weight diameter (MWD) of aggregates, organic matter content, bulk density, and macro- and microporosity. The lower values of macroaggregates and MWD in the surface than in the subsurface layer of the reconstructed soil resulted from the high degree of compaction caused by the traffic of heavy machinery on the clay material. After 24 months, all experimental grass treatments showed improvements in soil aggregation compared to the bare reconstructed soil (control), mainly in the 0.00-0.05 m layer, particularly in the two Urochloa treatments (T2 and T4) and Hemarthria altissima (T5). However, the great differences between the treatments with grasses and natural soil (reference) indicate that the recovery of the pre-mining soil structure could take decades.
Resumo:
Soils of the tropics are prone to a decrease in quality after conversion from native forest (FO) to a conventional tillage system (CT). However, the adoption of no-tillage (NT) and complex crop rotations may improve soil structural quality. Thus, the aim of this study was to evaluate the physical properties of an Oxisol under FO, CT, and three summer crop sequences in NT: continuous corn (NTcc), continuous soybean (NTcs), and a soybean/corn rotation (NTscr). Both NT and CT decreased soil organic carbon (SOC) content, SOC stock, water stable aggregates (WSA), geometric mean diameter (GMD), soil total porosity (TP), macroporosity (MA), and the least limiting water range (LLWR). However they increased soil bulk density (BD) and tensile strength (TS) of the aggregates when compared to soil under FO. Soil under NT had higher WSA, GMD, BD, TS and microporosty, but lower TP and MA than soil under CT. Soil under FO did not attain critical values for the LLWR, but the lower limit of the LLWR in soils under CT and NT was resistance to penetration (RP) for all values of BD, while the upper limit of field capacity was air-filled porosity for BD values greater than 1.46 (CT), 1.40 (NTscr), 1.42 (NTcc), and 1.41 (NTcs) kg dm-3. Soil under NTcc and NTcs decreased RP even with the increase in BD because of the formation of biopores. Furthermore, higher critical BD was verified under NTcc (1.62 kg dm-3) and NTcs (1.57 kg dm-3) compared to NTscr and CT (1.53 kg dm-3).
Resumo:
In evaluation of soil quality for agricultural use, soil structure is one of the most important properties, which is influenced not only by climate, biological activity, and management practices but also by mechanical and physico-chemical forces acting in the soil. The purpose of this study was to evaluate the influence of conventional agricultural management on the structure and microstructure of a Latossolo Vermelho distroférrico típico (Rhodic Hapludox) in an experimental area planted to maize. Soil morphology was described using the crop profile method by identifying the distinct structural volumes called Morphologically Homogeneous Units (MHUs). For comparison, we also described a profile in an adjacent area without agricultural use and under natural regrowth referred to as Memory. We took undisturbed samples from the main MHUs so as to form thin sections and blocks of soil for micromorphological and micromorphometrical analyses. Results from the application of the crop profile method showed the occurrence of the following structural types: loose (L), fragmented (F) and continuous (C) in both profiles analyzed. In the Memory soil profile, the fragmented structures were classified as Fptμ∆+tf and Fmt∆μ, whose micromorphology shows an enaulic-porphyric (porous) relative distribution with a great deal of biological activity as indicated by the presence of vughs and channels. Lower down, from 0.20 to 0.35 m, there was a continuous soil volume (sub-type C∆μ), with a subangular block microstructure and an enaulic-porphyric relative distribution, though in this case more compact and with aggregate coalescence and less biological activity. The micromorphometrical study of the soil of the Memory Plot showed the predominance of complex pores in NAM (15.03 %), Fmt∆μ (11.72 %), and Fptμ∆+tf (7.73 %), and rounded pores in C∆μ (8.21 %). In the soil under conventional agricultural management, we observed fragmented structures similar to the Memory Plot from 0.02 to 0.20 m, followed by a volume with a compact continuous structure (C∆μ), without visible porosity and with few roots. In the MHUs under conventional management, reduction in the packing pores (40 %) was observed, mainly in the continuous units (C). The microstructure had well-defined blocks, with the occurrence of planar pores and less evidence of biological activity. In conclusion, the morphological and micromorphological analyses of the soil profiles studied offered complementary information regarding soil structural quality, especially concerning the changes in pore types as result of mechanical stress undergone by the soil.
Resumo:
ABSTRACT The removal of thick layers of soil under native scrubland (Cerrado) on the right bank of the Paraná River in Selvíria (State of Mato Grosso do Sul, Brazil) for construction of the Ilha Solteira Hydroelectric Power Plant caused environmental damage, affecting the revegetation process of the stripped soil. Over the years, various kinds of land use and management systems have been tried, and the aim of this study was to assess the effects of these attempts to restore the structural quality of the soil. The experiment was conducted considering five treatments and thirty replications. The following treatments were applied: stripped soil without anthropic intervention and total absence of plant cover; stripped soil treated with sewage sludge and planted to eucalyptus and grass a year ago; stripped soil developing natural secondary vegetation (capoeira) since 1969; pastureland since 1978, replacing the native vegetation; and soil under native vegetation (Cerrado). In the 0.00-0.20 m layer, the soil was chemically characterized for each experimental treatment. A 30-point sampling grid was used to assess soil porosity and bulk density, and to assess aggregate stability in terms of mean weight diameter (MWD) and geometric mean diameter (GMD). Aggregate stability was also determined using simulated rainfall. The results show that using sewage sludge incorporated with a rotary hoe improved the chemical fertility of the soil and produced more uniform soil pore size distribution. Leaving the land to develop secondary vegetation or turning it over to pastureland produced an intermediate level of structural soil quality, and these two treatments produced similar results. Stripped soil without anthropic intervention was of the lowest quality, with the lowest values for cation exchange capacity (CEC) and macroporosity, as well as the highest values of soil bulk density and percentage of aggregates with diameter size <0.50 mm, corroborated by its lower organic matter content. However, the percentage of larger aggregates was higher in the native vegetation treatment, which boosted MWD and GMD values. Therefore, assessment of some land use and management systems show that even decades after their implementation to mitigate the degenerative effects resulting from the installation of the Hydroelectric Plant, more efficient approaches are still required to recover the structural quality of the soil.
Resumo:
This paper shows the results of the empirical study conducted in 186 tourist accommodation businesses in Spain certified under the "Q for Tourist Quality", own System Quality Management. It was raised with the purpose of analyzing the structure of the relationship between critical quality factors and results-social impact, how they operate and the level of their influence on obtaining these results within the company. Starting from a deep theoretical revision we propose a theoretical model together with the hypotheses to be tested, and we proceed to validation using the technique of Structural Equation Models. The results obtained show that companies wishing to improve their social impact should take into account that leadership is the most important factor to achieve it. Leadership indirectly affects the social impact through its influence on alliances and resources, quality policy/planning, personnel management and learning.
Resumo:
OBJECTIVE To examine whether religiousness mediates the relationship between sociodemographic factors, multimorbidity and health-related quality of life of older adults.METHODS This population-based cross-sectional study is part of the Survey on Health, Well-Being, and Aging (SABE). The sample was composed by 911 older adults from Sao Paulo, SP, Southeastern Brazil. Structural equation modeling was performed to assess the mediator effect of religiousness on the relationship between selected variables and health-related quality of life of older adults, with models for men and women. The independent variables were: age, education, family functioning and multimorbidity. The outcome variable was health-related quality of life of older adults, measured by SF-12 (physical and mental components). The mediator variables were organizational, non-organizational and intrinsic religiousness. Cronbach’s alpha values were: physical component = 0.85; mental component = 0.80; intrinsic religiousness = 0.89 and family APGAR (Adaptability, Partnership, Growth, Affection, and Resolve) = 0.91.RESULTS Higher levels of organizational and intrinsic religiousness were associated with better physical and mental components. Higher education, better family functioning and fewer diseases contributed directly to improved performance in physical and mental components, regardless of religiousness. For women, organizational religiousness mediated the relationship between age and physical (β = 2.401, p < 0.01) and mental (β = 1.663, p < 0.01) components. For men, intrinsic religiousness mediated the relationship between education and mental component (β = 7.158, p < 0.01).CONCLUSIONS Organizational and intrinsic religiousness had a beneficial effect on the relationship between age, education and health-related quality of life of these older adults.
Resumo:
Soils are the foundation of terrestrial ecosystems and their role in food production is fundamental, although physical degradation has been observed in recent years, caused by different cultural practices that modify structures and consequently the functioning of soils. The objective of this study was to evaluate possible structural changes and degradation in an Oxisol under different managements for 20 years: no-tillage cultivation with and without crop rotation, perennial crop and conventional tillage, plus a forested area (reference). Initially, the crop profile was described and subsequently, 10 samples per management system and forest soil were collected to quantify soil organic matter, flocculation degree, bulk density, and macroporosity. The results indicated structural changes down to a soil depth of 50 cm, with predominance of structural units ∆μ (intermediate compaction level) under perennial crop and no-tillage crop rotation, and of structural units ∆ (compacted) under conventional tillage and no-tillage. The soil was increasingly degraded in the increasing order: forest => no-tillage crop rotation => perennial crop => no-tillage without crop rotation => conventional tillage. In all managements, the values of organic matter and macroporosity were always below and bulk density always above those of the reference area (forest) and, under no-tillage crop rotation and perennial crop, the flocculation degree was proportionally equal to that of the reference area.
Resumo:
Many soils have a hard-setting behavior, also known as cohesive or "coesos". In such soils, the penetration resistance increases markedly when dry and decreases considerably when moist, creating serious limitations for plant emergence and growth. To evaluate the level of structure degradation in hard-setting soils with different texture classes and to create an index for assessing soil hardness levels in hard-setting soils, six soil representative profiles were selected in the field in various regions of Brazil. The following indices were tested: S, which measures soil physical quality, and H , which analyzes the degree of hardness and the effective stress in the soil during drying. Both indices were calculated using previously described functions based on data from the water-retention curves for the soils. The hard-setting values identified in different soils of the Brazilian Coastal Tablelands have distinct compaction (hardness) levels and can be satisfactorily measured by the H index. The S index was adequate for evaluating the structural characteristics of the hard-setting soils, classifying them as suitable or poor for cultivation, but only when the moisture level of the soil was near the inflection point. The H index showed that increases in density in hard-setting soils result from increases in effective stress and not from the soil texture. Values for Bd > 1.48 kg dm-3 classify the soil as hard-setting, and the structural organization is considered "poor".
Resumo:
ABSTRACTWhile a number of papers have shown that subway systems have an impact on the air quality through the release of particulate matters, no information about the impact of such particles on tree attributes is available. Tree leaves from three different species from the exit side of a subway station in Rio de Janeiro, Brazil, were more asymmetrical than leaves from the entrance side. This leaves also presenting changes in leaves cuticle and chlorophyll content.
Resumo:
The cellular structure of healthy food products, with added dietary fiber and low in calories, is an important factor that contributes to the assessment of quality, which can be quantified by image analysis of visual texture. This study seeks to compare image analysis techniques (binarization using Otsu’s method and the default ImageJ algorithm, a variation of the iterative intermeans method) for quantification of differences in the crumb structure of breads made with different percentages of whole-wheat flour and fat replacer, and discuss the behavior of the parameters number of cells, mean cell area, cell density, and circularity using response surface methodology. Comparative analysis of the results achieved with the Otsu and default ImageJ algorithms showed a significant difference between the studied parameters. The Otsu method demonstrated the crumb structure of the analyzed breads more reliably than the default ImageJ algorithm, and is thus the most suitable in terms of structural representation of the crumb texture.