47 resultados para STIMULATED INSULIN-SECRETION

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the development of the insulin secretion mechanism in the pancreas of fetal (19- and 21-day-old), neonatal (3-day-old), and adult (90-day-old) rats in response to stimulation with 8.3 or 16.7 mM glucose, 30 mM K+, 5 mM theophylline (Theo) and 200 µM carbamylcholine (Cch). No effect of glucose or high K+ was observed on the pancreas from 19-day-old fetuses, whereas Theo and Cch significantly increased insulin secretion at this age (82 and 127% above basal levels, respectively). High K+ also failed to alter the insulin secretion in the pancreas from 21-day-old fetuses, whereas 8.3 mM and 16.7 mM glucose significantly stimulated insulin release by 41 and 54% above basal levels, respectively. Similar results were obtained with Theo and Cch. A more marked effect of glucose on insulin secretion was observed in the pancreas of 3-day-old rats, reaching 84 and 179% above basal levels with 8.3 mM and 16.7 mM glucose, respectively. At this age, both Theo and Cch increased insulin secretion to close to two-times basal levels. In islets from adult rats, 8.3 mM and 16.7 mM glucose, Theo, and Cch increased the insulin release by 104, 193, 318 and 396% above basal levels, respectively. These data indicate that pancreatic B-cells from 19-day-old fetuses were already sensitive to stimuli that use either cAMP or IP3 and DAG as second messengers, but insensitive to stimuli such as glucose and high K+ that induce membrane depolarization. The greater effect of glucose on insulin secretion during the neonatal period indicates that this period is crucial for the maturation of the glucose-sensing mechanism in B-cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recognition and control of depression symptoms are important to increase patient compliance with treatment and to improve the quality of life of diabetic patients. Clinical studies indicate that selective serotonin reuptake inhibitors (SSRI) are better antidepressants for diabetic patients than other drugs. However, preclinical trials have demonstrated that not all SSRI reduce plasma glucose levels. In fact, fluoxetine increases and sertraline decreases glycemia in diabetic and non-diabetic rats. In the present study we evaluated plasma insulin levels during fasting and after glucose overload after treatment with sertraline. Adult male Wistar rats were fasted and treated with saline or 30 mg/kg sertraline and submitted or not to glucose overload (N = 10). Blood was collected and plasma insulin was measured. The mean insulin levels were: fasting group: 25.9 ± 3.86, sertraline + fasting group: 31.10 ± 2.48, overload group: 34.1 ± 3.40, and overload + sertraline group: 43.73 ± 5.14 µU/ml. Insulinemia was significantly increased in the overload + sertraline group. There were no differences between the other groups. No difference in glucose/insulin ratios could be detected between groups. The overload + sertraline group was the only one in which a significant number of individuals exceeded the upper confidence limit of insulin levels. This study demonstrates that sertraline increases glucose-stimulated insulin secretion without any change in peripheral insulin sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify early metabolic abnormalities in type 2 diabetes mellitus, we measured insulin secretion, sensitivity to insulin, and hepatic insulin extraction in 48 healthy normal glucose-tolerant Brazilians, first-degree relatives of type 2 diabetic patients (FH+). Each individual was matched for sex, age, weight, and body fat distribution with a person without history of type 2 diabetes (FH-). Both groups were submitted to a hyperglycemic clamp procedure (180 mg/dl). Insulin release was evaluated in its two phases. The first was calculated as the sum of plasma insulin at 2.5, 5.0, 7.5, and 10.0 min after the beginning of glucose infusion, and the second as the mean plasma insulin level in the third hour of the clamp procedure. Insulin sensitivity index (ISI) was the mean glucose infusion rate in the third hour of the clamp experiment divided by the mean plasma insulin concentration during the same period of time. Hepatic insulin extraction was determined under fasting conditions and in the third hour of the clamp procedure as the ratio between C-peptide and plasma insulin levels. FH+ individuals did not differ from FH- individuals in terms of the following parameters [median (range)]: a) first-phase insulin secretion, 174 (116-221) vs 207 (108-277) µU/ml, b) second-phase insulin secretion, 64 (41-86) vs 53 (37-83) µU/ml, and c) ISI, 14.8 (9.0-20.8) vs 16.8 (9.0-27.0) mg kg-1 min-1/µU ml-1. Hepatic insulin extraction in FH+ subjects was similar to that of FH- ones at basal conditions (median, 0.27 vs 0.27 ng/µU) and during glucose infusion (0.15 vs 0.15 ng/µU). Normal glucose-tolerant Brazilian FH+ individuals well-matched with FH- ones did not show defects of insulin secretion, insulin sensitivity, or hepatic insulin extraction as tested by hyperglycemic clamp procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes mellitus represents a serious public health problem owing to its global prevalence in the last decade. The causes of this metabolic disease include dysfunction and/or insufficient number of β cells. Existing diabetes mellitus treatments do not reverse or control the disease. Therefore, β-cell mass restoration might be a promising treatment. Several restoration approaches have been developed: inducing the proliferation of remaining insulin-producing cells, de novo islet formation from pancreatic progenitor cells (neogenesis), and converting non-β cells within the pancreas to β cells (transdifferentiation) are the most direct, simple, and least invasive ways to increase β-cell mass. However, their clinical significance is yet to be determined. Hypothetically, β cells or islet transplantation methods might be curative strategies for diabetes mellitus; however, the scarcity of donors limits the clinical application of these approaches. Thus, alternative cell sources for β-cell replacement could include embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells. However, most differentiated cells obtained using these techniques are functionally immature and show poor glucose-stimulated insulin secretion compared with native β cells. Currently, their clinical use is still hampered by ethical issues and the risk of tumor development post transplantation. In this review, we briefly summarize the current knowledge of mouse pancreas organogenesis, morphogenesis, and maturation, including the molecular mechanisms involved. We then discuss two possible approaches of β-cell mass restoration for diabetes mellitus therapy: β-cell regeneration and β-cell replacement. We critically analyze each strategy with respect to the accessibility of the cells, potential risk to patients, and possible clinical outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucokinase (GCK) is an enzyme that regulates insulin secretion, keeping glucose levels within a narrow range. Mutations in the glucokinase gene cause a rare form of diabetes called maturity-onset diabetes of the young (MODY). An early onset (less than 25 years), autosomal dominant inheritance and low insulin secretion stimulated by glucose characterize MODY patients. Specific insulin and proinsulin were measured in serum by immunofluorimetric assays (IFMA) during a 75-g oral glucose tolerance test (OGTT). Two kindreds (SA and LZ) were studied and compared to non-diabetic unrelated individuals (control group 1) matched for age and body mass index (BMI). In one kindred, some of these subjects were also obese (BMI >26 kg/m2), and other family members also presented with obesity and/or late-onset NIDDM. The MODY patients were also compared to a group of five of their first-degree relatives with obesity and/or late-onset NIDDM. The proinsulin profile was different in members of the two MODY kindreds. Fasting proinsulin and the proinsulin/insulin ratio were similar in MODY members of kindred LZ and subjects from control group 1, but were significantly lower than in MODY members of kindred SA (P<0.02 and P<0.01, for proinsulin and proinsulin/insulin ratio, respectively). Moreover, MODY members of family SA had higher levels of proinsulin and proinsulin/insulin ratio, although not significantly different, when compared to their first-degree relatives and to subjects from control group 2. In conclusion, we observed variable degrees of proinsulin levels and proinsulin/insulin ratio in MODY members of two different kindreds. The higher values of these parameters found in MODY and non-MODY members of kindred SA is probably related to the obesity and late-onset NIDDM background present in this family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The OB protein, also known as leptin, is secreted by adipose tissue, circulates in the blood, probably bound to a family of binding proteins, and acts on central neural networks regulating ingestive behavior and energy balance. The two forms of leptin receptors (long and short forms) have been identified in various peripheral tissues, a fact that makes them possible target sites for a direct action of leptin. It has been shown that the OB protein interferes with insulin secretion from pancreatic islets, reduces insulin-stimulated glucose transport in adipocytes, and increases glucose transport, glycogen synthesis and fatty acid oxidation in skeletal muscle. Under normoglycemic and normoinsulinemic conditions, leptin seems to shift the flux of metabolites from adipose tissue to skeletal muscle. This may function as a peripheral mechanism that helps control body weight and prevents obesity. Data that substantiate this hypothesis are presented in this review.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the present study was to modulate the secretion of insulin and glucagon in Beagle dogs by stimulation of nerves innervating the intact and partly dysfunctional pancreas. Three 33-electrode spiral cuffs were implanted on the vagus, splanchnic and pancreatic nerves in each of two animals. Partial dysfunction of the pancreas was induced with alloxan. The nerves were stimulated using rectangular, charge-balanced, biphasic, and constant current pulses (200 µs, 1 mA, 20 Hz, with a 100-µs delay between biphasic phases). Blood samples from the femoral artery were drawn before the experiment, at the beginning of stimulation, after 5 min of stimulation, and 5 min after the end of stimulation. Radioimmunoassay data showed that in the intact pancreas stimulation of the vagal nerve increased insulin (+99.2 µU/ml) and glucagon (+18.7 pg/ml) secretion and decreased C-peptide secretion (-0.15 ng/ml). Splanchnic nerve stimulation increased insulin (+1.7 µU/ml), C-peptide (+0.01 ng/ml), and glucagon (+50 pg/ml) secretion, whereas pancreatic nerve stimulation did not cause a marked change in any of the three hormones. In the partly dysfunctional pancreas, vagus nerve stimulation increased insulin (+15.5 µU/ml), glucagon (+11 pg/ml), and C-peptide (+0.03 ng/ml) secretion. Splanchnic nerve stimulation reduced insulin secretion (-2.5 µU/ml) and increased glucagon (+58.7 pg/ml) and C-peptide (+0.39 ng/ml) secretion, and pancreatic nerve stimulation increased insulin (+0.2 µU/ml), glucagon (+5.2 pg/ml), and C-peptide (+0.08 ng/ml) secretion. It was concluded that vagal nerve stimulation can significantly increase insulin secretion for a prolonged period of time in intact and in partly dysfunctional pancreas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In order to identify early abnormalities in non-insulin-dependent diabetes mellitus (NIDDM) we determined insulin (using an assay that does not cross-react with proinsulin) and proinsulin concentrations. The proinsulin/insulin ratio was used as an indicator of abnormal ß-cell function. The ratio of the first 30-min increase in insulin to glucose concentrations following the oral glucose tolerance test (OGTT; I30-0/G30-0) was taken as an indicator of insulin secretion. Insulin resistance (R) was evaluated by the homeostasis model assessment (HOMA) method. True insulin and proinsulin were measured during a 75-g OGTT in 35 individuals: 20 with normal glucose tolerance (NGT) and without diabetes among their first-degree relatives (FDR) served as controls, and 15 with NGT who were FDR of patients with NIDDM. The FDR group presented higher insulin (414 pmol/l vs 195 pmol/l; P = 0.04) and proinsulin levels (19.6 pmol/l vs 12.3 pmol/l; P = 0.03) post-glucose load than the control group. When these groups were stratified according to BMI, the obese FDR (N = 8) showed higher fasting and post-glucose insulin levels than the obese NGT (N = 9) (fasting: 64.8 pmol/l vs 7.8 pmol/l; P = 0.04, and 60 min post-glucose: 480.6 pmol/l vs 192 pmol/l; P = 0.01). Also, values for HOMA (R) were higher in the obese FDR compared to obese NGT (2.53 vs 0.30; P = 0.075). These results show that FDR of NIDDM patients have true hyperinsulinemia (which is not a consequence of cross-reactivity with proinsulin) and hyperproinsulinemia and no dysfunction of a qualitative nature in ß-cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several human studies suggest that light-to-moderate alcohol consumption is associated with enhanced insulin sensitivity, but these studies are not free of conflicting results. To determine if ethanol-enhanced insulin sensitivity could be demonstrated in an animal model, male Wistar rats were fed a standard chow diet and received drinking water without (control) or with different ethanol concentrations (0.5, 1.5, 3, 4.5 and 7%, v/v) for 4 weeks ad libitum. Then, an intravenous insulin tolerance test (IVITT) was performed to determine insulin sensitivity. Among the ethanol groups, only the 3% ethanol group showed an increase in insulin sensitivity based on the increase of the plasma glucose disappearance rate in the IVITT (30%, P<0.05). In addition, an intravenous glucose tolerance test (IVGTT) was performed in control and 3% ethanol animals. Insulin sensitivity was confirmed in 3% ethanol rats based on the reduction of insulin secretion in the IVGTT (35%, P<0.05), despite the same glucose profile. Additionally, the 3% ethanol treatment did not impair body weight gain or plasma aspartate aminotransferase and alanine aminotransferase activities. Thus, the present study established that 3% ethanol in the drinking water for 4 weeks in normal rats is a model of increased insulin sensitivity, which can be used for further investigations of the mechanisms involved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An important disease among human metabolic disorders is type 2 diabetes mellitus. This disorder involves multiple physiological defects that result from high blood glucose content and eventually lead to the onset of insulin resistance. The combination of insulin resistance, increased glucose production, and decreased insulin secretion creates a diabetic metabolic environment that leads to a lifetime of management. Appropriate models are critical for the success of research. As such, a unique model providing insight into the mechanisms of reversible insulin resistance is mammalian hibernation. Hibernators, such as ground squirrels and bats, are excellent examples of animals exhibiting reversible insulin resistance, for which a rapid increase in body weight is required prior to entry into dormancy. Hibernator studies have shown differential regulation of specific molecular pathways involved in reversible resistance to insulin. The present review focuses on this growing area of research and the molecular mechanisms that regulate glucose homeostasis, and explores the roles of the Akt signaling pathway during hibernation. Here, we propose a link between hibernation, a well-documented response to periods of environmental stress, and reversible insulin resistance, potentially facilitated by key alterations in the Akt signaling network, PPAR-γ/PGC-1α regulation, and non-coding RNA expression. Coincidentally, many of the same pathways are frequently found to be dysregulated during insulin resistance in human type 2 diabetes. Hence, the molecular networks that may regulate reversible insulin resistance in hibernating mammals represent a novel approach by providing insight into medical treatment of insulin resistance in humans.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We studied the synergistic effect of glucose and prolactin (PRL) on insulin secretion and GLUT2 expression in cultured neonatal rat islets. After 7 days in culture, basal insulin secretion (2.8 mM glucose) was similar in control and PRL-treated islets (1.84 ± 0.06% and 2.08 ± 0.07% of the islet insulin content, respectively). At 5.6 and 22 mM glucose, insulin secretion was significantly higher in PRL-treated than in control islets, achieving 1.38 ± 0.15% and 3.09 ± 0.21% of the islet insulin content in control and 2.43 ± 0.16% and 4.31 ± 0.24% of the islet insulin content in PRL-treated islets, respectively. The expression of the glucose transporter GLUT2 in B-cell membranes was dose-dependently increased by exposure of the islet to increasing glucose concentrations. This effect was potentiated in islets cultured for 7 days in the presence of 2 µg/ml PRL. At 5.6 and 10 mM glucose, the increase in GLUT2 expression in PRL-treated islets was 75% and 150% higher than that registered in the respective control. The data presented here indicate that insulin secretion, induced by different concentrations of glucose, correlates well with the expression of the B-cell-specific glucose transporter GLUT2 in pancreatic islets

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In most of cells bradykinin (BK) induces intracellular calcium mobilization. In pancreatic beta cells intracellular calcium is a major signal for insulin secretion. In these cells, glucose metabolism yields intracellular ATP which blocks membrane potassium channels. The membrane depolarizes, voltage-dependent Ca2+ channels are activated and the intracellular calcium load allows insulin secretion. Repolarization occurs due to activation of the Ca2+-dependent K+ channel. The insulin secretion depends on the integrity of this oscillatory process (bursts). Therefore, we decided to determine whether BK (100 nM) induces bursts in the presence of a non-stimulatory glucose concentration (5.6 mM). During continuous membrane voltage recording, our results showed that bursts were obtained with 11 mM glucose, blocked with 5.6 mM glucose and recovered with 5.6 mM glucose plus 100 nM BK. Thus, the stimulatory process obtained in the presence of BK and of a non-stimulatory concentration of glucose in the present study suggests that BK may facilitate the action of glucose on beta cell secretion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The causes of luteal phase progesterone deficiency in polycystic ovary syndrome (PCOS) are not known. To determine the possible involvement of hyperinsulinemia in luteal phase progesterone deficiency in women with PCOS, we examined the relationship between progesterone, luteinizing hormone (LH) and insulin during the luteal phase and studied the effect of metformin on luteal progesterone levels in PCOS. Patients with PCOS (19 women aged 18-35 years) were treated with metformin (500 mg three times daily) for 4 weeks prior to the test cycle and throughout the study period, and submitted to ovulation induction with clomiphene citrate. Blood samples were collected from control (N = 5, same age range as PCOS women) and PCOS women during the late follicular (one sample) and luteal (3 samples) phases and LH, insulin and progesterone concentrations were determined. Results were analyzed by one-way analysis of variance (ANOVA), Duncan's test and Karl Pearson's coefficient of correlation (r). The endocrine study showed low progesterone level (4.9 ng/ml) during luteal phase in the PCOS women as compared with control (21.6 ng/ml). A significant negative correlation was observed between insulin and progesterone (r = -0.60; P < 0.01) and between progesterone and LH (r = -0.56; P < 0.05) concentrations, and a positive correlation (r = 0.83; P < 0.001) was observed between LH and insulin. The study further demonstrated a significant enhancement in luteal progesterone concentration (16.97 ng/ml) in PCOS women treated with metformin. The results suggest that hyperinsulinemia/insulin resistance may be responsible for low progesterone levels during the luteal phase in PCOS. The luteal progesterone level may be enhanced in PCOS by decreasing insulin secretion with metformin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We evaluated changes in glucose tolerance of 17 progressors and 62 non-progressors for 9 years to improve our understanding of the pathogenesis of type 2 diabetes mellitus. Changes in anthropometric measurements and responses to an oral glucose tolerance test (OGTT) were analyzed. We identified 14 pairs of individuals, one from each group, who were initially normal glucose tolerant and were matched for gender, age, weight, and girth. We compared initial plasma glucose and insulin curves (from OGTT), insulin secretion (first and second phases) and insulin sensitivity indices (from hyperglycemic clamp assay) for both groups. In the normal glucose tolerant phase, progressors presented: 1) a higher OGTT blood glucose response with hyperglycemia in the second hour and a similar insulin response vs non-progressors; 2) a reduced first-phase insulin secretion (2.0 ± 0.3 vs 2.3 ± 0.3 pmol/L; P < 0.02) with a similar insulin sensitivity index and a lower disposition index (3.9 ± 0.2 vs 4.1 ± 0.2 µmol·kg-1·min-1 ; P < 0.05) vs non-progressors. After 9 years, both groups presented similar increases in weight and fasting blood glucose levels and progressors had an increased glycemic response at 120 min (P < 0.05) and reduced early insulin response to OGTT (progressors, 1st: 2.10 ± 0.34 vs 2nd: 1.87 ± 0.25 pmol/mmol; non-progressors, 1st: 2.15 ± 0.28 vs 2nd: 2.03 ± 0.39 pmol/mmol; P < 0.05). Theses data suggest that β-cell dysfunction might be a risk factor for type 2 diabetes mellitus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The actions of thyroid hormone (TH) on pancreatic beta cells have not been thoroughly explored, with current knowledge being limited to the modulation of insulin secretion in response to glucose, and beta cell viability by regulation of pro-mitotic and pro-apoptotic factors. Therefore, the effects of TH on proinsulin gene expression are not known. This led us to measure: a) proinsulin mRNA expression, b) proinsulin transcripts and eEF1A protein binding to the actin cytoskeleton, c) actin cytoskeleton arrangement, and d) proinsulin mRNA poly(A) tail length modulation in INS-1E cells cultured in different media containing: i) normal fetal bovine serum - FBS (control); ii) normal FBS plus 1 µM or 10 nM T3, for 12 h, and iii) FBS depleted of TH for 24 h (Tx). A decrease in proinsulin mRNA content and attachment to the cytoskeleton were observed in hypothyroid (Tx) beta cells. The amount of eEF1A protein anchored to the cytoskeleton was also reduced in hypothyroidism, and it is worth mentioning that eEF1A is essential to attach transcripts to the cytoskeleton, which might modulate their stability and rate of translation. Proinsulin poly(A) tail length and cytoskeleton arrangement remained unchanged in hypothyroidism. T3 treatment of control cells for 12 h did not induce any changes in the parameters studied. The data indicate that TH is important for proinsulin mRNA expression and translation, since its total amount and attachment to the cytoskeleton are decreased in hypothyroid beta cells, providing evidence that effects of TH on carbohydrate metabolism also include the control of proinsulin gene expression.