93 resultados para SPECTRAL CLASSIFICATION
em Scielo Saúde Pública - SP
Resumo:
Soil science has sought to develop better techniques for the classification of soils, one of which is the use of remote sensing applications. The use of ground sensors to obtain soil spectral data has enabled the characterization of these data and the advancement of techniques for the quantification of soil attributes. In order to do this, the creation of a soil spectral library is necessary. A spectral library should be representative of the variability of the soils in a region. The objective of this study was to create a spectral library of distinct soils from several agricultural regions of Brazil. Spectral data were collected (using a Fieldspec sensor, 350-2,500 nm) for the horizons of 223 soil profiles from the regions of Matão, Paraguaçu Paulista, Andradina, Ipaussu, Mirandópolis, Piracicaba, São Carlos, Araraquara, Guararapes, Valparaíso (SP); Naviraí, Maracajú, Rio Brilhante, Três Lagoas (MS); Goianésia (GO); and Uberaba and Lagoa da Prata (MG). A Principal Component Analysis (PCA) of the data was then performed and a graphic representation of the spectral curve was created for each profile. The reflectance intensity of the curves was principally influenced by the levels of Fe2O3, clay, organic matter and the presence of opaque minerals. There was no change in the spectral curves in the horizons of the Latossolos, Nitossolos, and Neossolos Quartzarênicos. Argissolos had superficial horizon curves with the greatest intensity of reflection above 2,200 nm. Cambissolos and Neossolos Litólicos had curves with greater reflectance intensity in poorly developed horizons. Gleisols showed a convex curve in the region of 350-400 nm. The PCA was able to separate different data collection areas according to the region of source material. Principal component one (PC1) was correlated with the intensity of reflectance samples and PC2 with the slope between the visible and infrared samples. The use of the Spectral Library as an indicator of possible soil classes proved to be an important tool in profile classification.
Resumo:
Considering that information from soil reflectance spectra is underutilized in soil classification, this paper aimed to evaluate the relationship of soil physical, chemical properties and their spectra, to identify spectral patterns for soil classes, evaluate the use of numerical classification of profiles combined with spectral data for soil classification. We studied 20 soil profiles from the municipality of Piracicaba, State of São Paulo, Brazil, which were morphologically described and classified up to the 3rd category level of the Brazilian Soil Classification System (SiBCS). Subsequently, soil samples were collected from pedogenetic horizons and subjected to soil particle size and chemical analyses. Their Vis-NIR spectra were measured, followed by principal component analysis. Pearson's linear correlation coefficients were determined among the four principal components and the following soil properties: pH, organic matter, P, K, Ca, Mg, Al, CEC, base saturation, and Al saturation. We also carried out interpretation of the first three principal components and their relationships with soil classes defined by SiBCS. In addition, numerical classification of the profiles based on the OSACA algorithm was performed using spectral data as a basis. We determined the Normalized Mutual Information (NMI) and Uncertainty Coefficient (U). These coefficients represent the similarity between the numerical classification and the soil classes from SiBCS. Pearson's correlation coefficients were significant for the principal components when compared to sand, clay, Al content and soil color. Visual analysis of the principal component scores showed differences in the spectral behavior of the soil classes, mainly among Argissolos and the others soils. The NMI and U similarity coefficients showed values of 0.74 and 0.64, respectively, suggesting good similarity between the numerical and SiBCS classes. For example, numerical classification correctly distinguished Argissolos from Latossolos and Nitossolos. However, this mathematical technique was not able to distinguish Latossolos from Nitossolos Vermelho férricos, but the Cambissolos were well differentiated from other soil classes. The numerical technique proved to be effective and applicable to the soil classification process.
Resumo:
The objective of this work was to evaluate the application of the spectral-temporal response surface (STRS) classification method on Moderate Resolution Imaging Spectroradiometer (MODIS, 250 m) sensor images in order to estimate soybean areas in Mato Grosso state, Brazil. The classification was carried out using the maximum likelihood algorithm (MLA) adapted to the STRS method. Thirty segments of 30x30 km were chosen along the main agricultural regions of Mato Grosso state, using data from the summer season of 2005/2006 (from October to March), and were mapped based on fieldwork data, TM/Landsat-5 and CCD/CBERS-2 images. Five thematic classes were considered: Soybean, Forest, Cerrado, Pasture and Bare Soil. The classification by the STRS method was done over an area intersected with a subset of 30x30-km segments. In regions with soybean predominance, STRS classification overestimated in 21.31% of the reference values. In regions where soybean fields were less prevalent, the classifier overestimated 132.37% in the acreage of the reference. The overall classification accuracy was 80%. MODIS sensor images and the STRS algorithm showed to be promising for the classification of soybean areas in regions with the predominance of large farms. However, the results for fragmented areas and smaller farms were less efficient, overestimating soybean areas.
Resumo:
The soybean is important to the economy of Brazil, so the estimation of the planted area and the production with higher antecedence and reliability becomes essential. Techniques related to Remote Sensing may help to obtain this information at lower cost and less subjectivity in relation to traditional surveys. The aim of this study is to estimate the planted area with soybean culture in the crop of 2008/2009 in cities in the west of the state of Paraná, in Brazil, based on the spectral dynamics of the culture and through the use of the specific system of analysis for images of Landsat 5/TM satellite. The obtained results were satisfactory, because the classification supervised by Maximum Verisimilitude - MaxVer along with the techniques of the specific system of analysis for satellite images has allowed an estimate of soybean planted area (soybean mask), obtaining values of the metrics of Global Accuracy with an average of 79.05% and Kappa Index over 63.50% in all cities. The monitoring of a reference area was of great importance for determining the vegetative phase in which the culture is more different from the other targets, facilitating the choice of training samples (ROIs) and avoiding misclassifications.
Resumo:
In vivo proton magnetic resonance spectroscopy (¹H-MRS) is a technique capable of assessing biochemical content and pathways in normal and pathological tissue. In the brain, ¹H-MRS complements the information given by magnetic resonance images. The main goal of the present study was to assess the accuracy of ¹H-MRS for the classification of brain tumors in a pilot study comparing results obtained by manual and semi-automatic quantification of metabolites. In vivo single-voxel ¹H-MRS was performed in 24 control subjects and 26 patients with brain neoplasms that included meningiomas, high-grade neuroglial tumors and pilocytic astrocytomas. Seven metabolite groups (lactate, lipids, N-acetyl-aspartate, glutamate and glutamine group, total creatine, total choline, myo-inositol) were evaluated in all spectra by two methods: a manual one consisting of integration of manually defined peak areas, and the advanced method for accurate, robust and efficient spectral fitting (AMARES), a semi-automatic quantification method implemented in the jMRUI software. Statistical methods included discriminant analysis and the leave-one-out cross-validation method. Both manual and semi-automatic analyses detected differences in metabolite content between tumor groups and controls (P < 0.005). The classification accuracy obtained with the manual method was 75% for high-grade neuroglial tumors, 55% for meningiomas and 56% for pilocytic astrocytomas, while for the semi-automatic method it was 78, 70, and 98%, respectively. Both methods classified all control subjects correctly. The study demonstrated that ¹H-MRS accurately differentiated normal from tumoral brain tissue and confirmed the superiority of the semi-automatic quantification method.
Resumo:
Forest cover of the Maringá municipality, located in northern Parana State, was mapped in this study. Mapping was carried out by using high-resolution HRC sensor imagery and medium resolution CCD sensor imagery from the CBERS satellite. Images were georeferenced and forest vegetation patches (TOFs - trees outside forests) were classified using two methods of digital classification: reflectance-based or the digital number of each pixel, and object-oriented. The areas of each polygon were calculated, which allowed each polygon to be segregated into size classes. Thematic maps were built from the resulting polygon size classes and summary statistics generated from each size class for each area. It was found that most forest fragments in Maringá were smaller than 500 m². There was also a difference of 58.44% in the amount of vegetation between the high-resolution imagery and medium resolution imagery due to the distinct spatial resolution of the sensors. It was concluded that high-resolution geotechnology is essential to provide reliable information on urban greens and forest cover under highly human-perturbed landscapes.
Resumo:
ABSTRACT The objective of this work was to study the distribution of values of the coefficient of variation (CV) in the experiments of papaya crop (Carica papaya L.) by proposing ranges to guide researchers in their evaluation for different characters in the field. The data used in this study were obtained by bibliographical review in Brazilian journals, dissertations and thesis. This study considered the following characters: diameter of the stalk, insertion height of the first fruit, plant height, number of fruits per plant, fruit biomass, fruit length, equatorial diameter of the fruit, pulp thickness, fruit firmness, soluble solids and internal cavity diameter, from which, value ranges were obtained for the CV values for each character, based on the methodology proposed by Garcia, Costa and by the standard classification of Pimentel-Gomes. The results obtained in this study indicated that ranges of CV values were different among various characters, presenting a large variation, which justifies the necessity of using specific evaluation range for each character. In addition, the use of classification ranges obtained from methodology of Costa is recommended.
Resumo:
INTRODUCTION: The correct identification of the underlying cause of death and its precise assignment to a code from the International Classification of Diseases are important issues to achieve accurate and universally comparable mortality statistics These factors, among other ones, led to the development of computer software programs in order to automatically identify the underlying cause of death. OBJECTIVE: This work was conceived to compare the underlying causes of death processed respectively by the Automated Classification of Medical Entities (ACME) and the "Sistema de Seleção de Causa Básica de Morte" (SCB) programs. MATERIAL AND METHOD: The comparative evaluation of the underlying causes of death processed respectively by ACME and SCB systems was performed using the input data file for the ACME system that included deaths which occurred in the State of S. Paulo from June to December 1993, totalling 129,104 records of the corresponding death certificates. The differences between underlying causes selected by ACME and SCB systems verified in the month of June, when considered as SCB errors, were used to correct and improve SCB processing logic and its decision tables. RESULTS: The processing of the underlying causes of death by the ACME and SCB systems resulted in 3,278 differences, that were analysed and ascribed to lack of answer to dialogue boxes during processing, to deaths due to human immunodeficiency virus [HIV] disease for which there was no specific provision in any of the systems, to coding and/or keying errors and to actual problems. The detailed analysis of these latter disclosed that the majority of the underlying causes of death processed by the SCB system were correct and that different interpretations were given to the mortality coding rules by each system, that some particular problems could not be explained with the available documentation and that a smaller proportion of problems were identified as SCB errors. CONCLUSION: These results, disclosing a very low and insignificant number of actual problems, guarantees the use of the version of the SCB system for the Ninth Revision of the International Classification of Diseases and assures the continuity of the work which is being undertaken for the Tenth Revision version.
Resumo:
OBJECTIVE: To develop a Charlson-like comorbidity index based on clinical conditions and weights of the original Charlson comorbidity index. METHODS: Clinical conditions and weights were adapted from the International Classification of Diseases, 10th revision and applied to a single hospital admission diagnosis. The study included 3,733 patients over 18 years of age who were admitted to a public general hospital in the city of Rio de Janeiro, southeast Brazil, between Jan 2001 and Jan 2003. The index distribution was analyzed by gender, type of admission, blood transfusion, intensive care unit admission, age and length of hospital stay. Two logistic regression models were developed to predict in-hospital mortality including: a) the aforementioned variables and the risk-adjustment index (full model); and b) the risk-adjustment index and patient's age (reduced model). RESULTS: Of all patients analyzed, 22.3% had risk scores >1, and their mortality rate was 4.5% (66.0% of them had scores >1). Except for gender and type of admission, all variables were retained in the logistic regression. The models including the developed risk index had an area under the receiver operating characteristic curve of 0.86 (full model), and 0.76 (reduced model). Each unit increase in the risk score was associated with nearly 50% increase in the odds of in-hospital death. CONCLUSIONS: The risk index developed was able to effectively discriminate the odds of in-hospital death which can be useful when limited information is available from hospital databases.
Resumo:
Studies were made on the biochemical behavior of 100 strains of P.pestis isolated in Northeastern Brazil with regard to production of nitrous acid, reduction of nitrates to nitrltes, and aciáification of glycerol. Results showed that 98 strains can be classified as "orientalis variety", while the remaining two could not be included in any of the existing "varieties".
Resumo:
We report a retrospective histopathological classification carried out under laboratory conditions by the method of Ridley & Jopling of 1,108 skin biopsies from patients clinically suspected of having leprosy from Bahia, Northeast Brazil.
Resumo:
INTRODUCTION: This study aimed to evaluate spasticity in human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients before and after physical therapy using the International Classification of Functioning, Disability and Health (ICF). METHODS: Nine subjects underwent physical therapy. Spasticity was evaluated using the Modified Ashworth Scale. The obtained scores were converted into ICF body functions scores. RESULTS: The majority of subjects had a high degree of spasticity in the quadriceps muscles. According to the ICF codes, the spasticity decreased after 20 sessions of physical therapy. CONCLUSIONS: The ICF was effective in evaluating spasticity in HAM/TSP patients.
Resumo:
Abstract: INTRODUCTION: The dengue classification proposed by the World Health Organization (WHO) in 2009 is considered more sensitive than the classification proposed by the WHO in 1997. However, no study has assessed the ability of the WHO 2009 classification to identify dengue deaths among autopsied individuals suspected of having dengue. In the present study, we evaluated the ability of the WHO 2009 classification to identify dengue deaths among autopsied individuals suspected of having dengue in Northeast Brazil, where the disease is endemic. METHODS: This retrospective study included 121 autopsied individuals suspected of having dengue in Northeast Brazil during the epidemics of 2011 and 2012. All the autopsied individuals included in this study were confirmed to have dengue based on the findings of laboratory examinations. RESULTS: The median age of the autopsied individuals was 34 years (range, 1 month to 93 years), and 54.5% of the individuals were males. According to the WHO 1997 classification, 9.1% (11/121) of the cases were classified as dengue hemorrhagic fever (DHF) and 3.3% (4/121) as dengue shock syndrome. The remaining 87.6% (106/121) of the cases were classified as dengue with complications. According to the 2009 classification, 100% (121/121) of the cases were classified as severe dengue. The absence of plasma leakage (58.5%) and platelet counts <100,000/mm3 (47.2%) were the most frequent reasons for the inability to classify cases as DHF. CONCLUSIONS: The WHO 2009 classification is more sensitive than the WHO 1997 classification for identifying dengue deaths among autopsied individuals suspected of having dengue.
Resumo:
Many texture measures have been developed and used for improving land-cover classification accuracy, but rarely has research examined the role of textures in improving the performance of aboveground biomass estimations. The relationship between texture and biomass is poorly understood. This paper used Landsat Thematic Mapper (TM) data to explore relationships between TM image textures and aboveground biomass in Rondônia, Brazilian Amazon. Eight grey level co-occurrence matrix (GLCM) based texture measures (i.e., mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation), associated with seven different window sizes (5x5, 7x7, 9x9, 11x11, 15x15, 19x19, and 25x25), and five TM bands (TM 2, 3, 4, 5, and 7) were analyzed. Pearson's correlation coefficient was used to analyze texture and biomass relationships. This research indicates that most textures are weakly correlated with successional vegetation biomass, but some textures are significantly correlated with mature forest biomass. In contrast, TM spectral signatures are significantly correlated with successional vegetation biomass, but weakly correlated with mature forest biomass. Our findings imply that textures may be critical in improving mature forest biomass estimation, but relatively less important for successional vegetation biomass estimation.