209 resultados para SODIUM-SULFONATE GROUPS
em Scielo Saúde Pública - SP
Resumo:
Hypoalbuminemia may cause interstitial edema and hemodilution, which we hypothesized may influence serum sodium levels. Our purpose was to compare serum sodium levels of hospitalized adults with or without hypoalbuminemia. All sodium and albumin serum levels of 142 adults hospitalized at general medical wards over a six-month period were searched at a University Hospital mainframe computer. Relevant laboratory data and clinical details were also registered. Hypoalbuminemia was defined by serum albumin concentration < 3.3 g/dl Fisher, Mann-Whitney, and Student's t tests were applied to compare groups with or without hypoalbuminemia. Ninety-nine patients, classified as hypoalbuminemic, had lower blood hemoglobin (10.68 ± 2.62 vs. 13.54 ± 2.41), and sodium (135.1 ± 6.44 vs. 139.9 ± 4.76mEq/l) and albumin (2.74 ± 0.35 vs. 3.58 ± 0.28g/dl) serum levels than non-hypoalbuminemic (n=43). Pearson's coefficient showed a significant direct correlation between albumin and sodium serum levels (r=0.40) and between serum albumin and blood hemoglobin concentration (r=0.46). Our results suggest that hypoalbuminemic adults have lower serum sodium levels than those without hypoalbuminemia, a phenomenon that may be at least partially attributed to body water retention associated with acute phase response syndrome.
Resumo:
Evidence shows that cardiac hypertrophy (CH) is a risk factor for many cardiovascular diseases. Several stimuli may cause CH-like manifestations and promote volume or pressure overload. Exercise-induced cardiac hypertrophy is an expected adaptation to regular exercise training. Salt intake has been shown to be the most important determinant of blood pressure in different populations. The purpose of the present work was to verify the influence of physical exercise and sodium intake on the blood pressure and myocardium. The study was performed on 36 rats divided into six groups: Group I (diet without salt overload), Group II (diet without salt overload and swimming), Group III (diet with 2.5% NaCl solution and swimming), Group IV (diet with 5% NaCl solution and swimming), Group V (diet with 2.5% NaCl solution without exercise), Group VI (diet with 5% NaCl solution without exercise). The arterial pressure was significantly lower in Group I when compared with Group IV. The ratio of cardiac mass/body mass was increased in Groups III and IV. In conclusion, there was evidence that exercise training and NaCl intake promotes arterial hypertension and cardiac hypertrophy.
Resumo:
METHOD: Eighty patients were prospectively randomized for precolonoscopic cleansing either with 750 ml of 10% mannitol (Group M) or 180 ml of a sodium phosphate preparation (Group NaP). Laboratory examinations before and after preparation on all patients included hemoglobin, hematocrit, sodium, potassium, phosphorous, calcium and serum osmolarity. A questionnaire was used to assess undesirable side effects and patient tolerance to the solution. The quality of preparation was assessed by the endoscopist who was unaware of the solution employed. RESULTS: Statistically significant changes were verified in serum sodium, phosphorous, potassium and calcium between the two groups, but no clinical symptoms were observed. There were no significant differences in the frequency of side effects studied. Six of the eight patients in Group NaP who had taken mannitol for a previous colonoscopy claimed better acceptance of the sodium phosphate solution. The endoscopic-blinded trial reported excellent or good bowel preparation in 85% prepared with sodium phosphate versus 82.5% for mannitol (p=0.37). CONCLUSIONS: Quality of preparation and frequency of side effects was similar in the two solutions. The smaller volume of sodium phosphate necessary for preparation seems to be related to its favorable acceptance. Nevertheless, the retention of sodium and phosphate ions contraindicates the use of sodium phosphate in patients with renal failure, cirrhosis, ascites, and heart failure.
Resumo:
An evaluation of hydration and thermal decomposition of HAlg and its sodium salt is described using thermogravimetry (TG) and differential scanning calorimetry (DSC). TG curves in N2 and air, were obtained for alginic acid showed two decomposition steps attributed to loss of water and polymer decomposition respectively. The sodium alginate decomposed in three steps. The first attributed to water loss, followed by the formation of a carbonaceous residue and finally the Na2CO3. DSC curves presented peaks in agreement with the TG data. In the IR alginic acid presented bands at 1730 and 1631 cm-1, while sodium alginate presented a doublet at 1614 e 1431 cm-1, evidencing the presence of salified carboxyl groups.
Resumo:
The use of aluminum silicates for decontaminating animal feed containing aflatoxins has yielded encouraging results in chicken and turkey poults. In contrast, very few studies have tested these substances in aquaculture. In this work, we investigated the efficacy of a trout diet containing 0.5% hydrated sodium aluminosilicate (HSAS) in protecting against contamination with aflatoxin B1. Trout were reared on these diets for one year and the experimental groups were examined monthly for hepatic presumptive preneoplastic and neoplastic lesions. Regardless of the presence of HSAS, all of the fish that received aflatoxin in their diet have shown hepatic lesions indicative of a carcinogenic process, presenting also the development of cancer in some fish. The concentration of HSAS used in this study was ineffective in preventing the onset of hepatic lesions induced by aflatoxin B1 in rainbow trout.
Resumo:
The daily weight gain, behavioral activities (grazing, ruminating and water consumption) and the number of rumen protozoa, pH, NH3, and the osmolarity of rumen fluid was evaluated for four groups of six calves HPB/Zebu submitted to daily intake of 15, 30, 60 and 90g of NaCl during 135 days (9th Jan. to 24th May 2008).Throughout the experimental period the calves were in perfect health condition and did not show any signs suggestive of chronic sodium poisoning. There was no significant difference in average daily gain of the calves as the intake of NaCl increased. No significant behavioral changes were observed in the activities of grazing and rumination. However, there was a noticeable change in the frequency of water consumption in the calves that ingested 90g/d of NaCl; they went more often to the trough and drank more water than the group that ingested only 15g sodium chloride/d. The osmolarity of ruminal liquid was higher in the group of calves fed 90g of NaCl/d. The pH, NH3 concentration and number of rumen protozoa was within the normal range.
Resumo:
The aim of this study was to evaluate the preventive effect of sodium bicarbonate on systemic acidosis due to ruminal acidosis, which was induced by ingestion of concentrate after prolonged fasting. Fourteen sheep were divided into three experimental groups: control group (Cg), with four sheep, submitted to fasting without development of ruminal acidosis; no-treated group (NTg), with five sheep with rumen acidosis without preventive treatment; and treated group (Tg), with five sheep with rumen acidosis and preventively treated with sodium bicarbonate. Assessments of ruminal pH and arterial hemogasometry were performed for 48 hours after ingestion of the concentrate. There was a reduction in the ruminal pH in all groups, whereas the Cg showed a reduction only after 24 hours. A reduction in the arterial pH, bicarbonate and base excess in all groups was also noted, indicating systemic metabolic acidosis, but the NTg presented the greatest alteration. It is concluded that sodium bicarbonate prevents systemic metabolic acidosis, reducing its severity in sheep subjected to ruminal acidosis.
Resumo:
The study aimed to compare the effects of intraosseous infusion of lactated Ringer's and 0.9% sodium chloride solutions on the electrolytes and acid-base balance in pigeons submitted to humerus osteosynthesis. Eighteen pigeons were undergoing to isoflurane anesthesia by an avalvular circuit system. They were randomly assigned into two groups (n=9) receiving lactated Ringer's solution (LR) or 0.9% sodium chloride (SC), in a continuous infusion rate of 20mL/kg/h, by using an intraosseous catheter into the tibiotarsus during 60-minute anesthetic procedure. Heart rate (HR), and respiratory rate (RR) were measured every 10 min. Venous blood samples were collected at 0, 30 and 60 minutes to analyze blood pH, PvCO2, HCO3 -, Na+ and K+. Blood gases and electrolytes showed respiratory acidosis in both groups during induction, under physical restraint. This acidosis was evidenced by a decrease of pH since 0 min, associated with a compensatory response, observed by increasing of HCO3 - concentration, at 30 and 60 min. It was not observed any changes on Na+ and K+ serum concentrations. According to the results, there is no reason for choosing one of the two solutions, and it could be concluded that both fluid therapy solutions do not promote any impact on acid-base balance and electrolyte concentrations in pigeons submitted to humerus osteosynthesis.
Resumo:
Systemic metabolic acidosis is known to cause a decrease in salt and water reabsorption by the kidney. We have used renal lithium clearance to investigate the effect of chronic, NH4Cl-induced metabolic acidosis on the renal handling of Na+ in male Wistar-Hannover rats (200-250 g). Chronic acidosis (pH 7.16 ± 0.13) caused a sustained increase in renal fractional Na+ excretion (267.9 ± 36.4%), accompanied by an increase in fractional proximal (113.3 ± 3.6%) and post-proximal (179.7 ± 20.2%) Na+ and urinary K+ (163.4 ± 5.6%) excretion when compared to control and pair-fed rats. These differences occurred in spite of an unchanged creatinine clearance and Na+ filtered load. A lower final body weight was observed in the acidotic (232 ± 4.6 g) and pair-fed (225 ± 3.6 g) rats compared to the controls (258 ± 3.7 g). In contrast, there was a significant increase in the kidney weights of acidotic rats (1.73 ± 0.05 g) compared to the other experimental groups (control, 1.46 ± 0.05 g; pair-fed, 1.4 ± 0.05 g). We suggest that altered renal Na+ and K+ handling in acidotic rats may result from a reciprocal relationship between the level of metabolism in renal tubules and ion transport.
Resumo:
In the course of studies on the effects of septal area lesions on neuroimmunomodulation and Walker 256 tumor development, it was observed that tumor-induced sodium and water retention was less marked in lesioned than in non-lesioned rats. In the present study possible mechanisms involved in this phenomenon were investigated. The experiments were performed in septal-lesioned (LW; N = 15) and sham-operated (SW; N = 7) 8-week-old male Wistar rats, which received multifocal simultaneous subcutaneous (sc) inoculations of Walker 256 tumor cells about 30 days after the stereotaxic surgery. Control groups (no tumor, sham-operated food-restricted (SFR), N = 7) and lesioned food-restricted (LFR, N = 10) were subjected to a feeding pattern similar to that observed in tumor-bearing animals. Multifocal inoculation of Walker 256 tumor rapidly induces anorexia, which is paradoxically accompanied by an increase in body weight, as a result of renal Na+ and fluid retention. These effects of the tumor were also seen in LW rats, although the rise in fractional sodium balance during the early clinical period was significantly smaller than in SW rats (day 4: SW = 47.6 ± 6.4% and LW = 13.8 ± 5.2%; day 5: SW = 57.5 ± 3.5% and LW = 25.7 ± 4.8%; day 6: SW = 54.4 ± 3.8% and LW = 32.1 ± 4.4%; P<0.05), suggesting a temporary reduction in tumor-induced sodium retention. In contrast, urine output was significantly reduced in SW rats and increased in LW rats (LW up to -0.85 and SW up to 4.5 ml/100 g body weight), with no change in osmolar excretion. These temporary changes in the tumor's effects on LW rats may reflect a "reversal" of the secondary central antidiuretic response induced by the tumor (from antidiuretic to diuretic).
Resumo:
The role of sympathetic nerve activity in the changes in arterial blood pressure and renal function caused by the chronic administration of NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) synthesis, was examined in sham and bilaterally renal denervated rats. Several studies have demonstrated that sympathetic nerve activity is elevated acutely after L-NAME administration. To evaluate the role of renal nerve activity in L-NAME-induced hypertension, we compared the blood pressure response in four groups (N = 10 each) of male Wistar-Hannover rats weighing 200 to 250 g: 1) sham-operated vehicle-treated, 2) sham-operated L-NAME-treated, 3) denervated vehicle-treated, and 4) denervated L-NAME-treated rats. After renal denervation or sham surgery, one control week was followed by three weeks of oral administration of L-NAME by gavage. Arterial pressure was measured weekly in conscious rats by a tail-cuff method and renal function tests were performed in individual metabolic cages 0, 7, 14 and 21 days after the beginning of L-NAME administration. L-NAME (60 mg kg-1 day-1) progressively increased arterial pressure from 108 ± 6.0 to 149 ± 12 mmHg (P<0.05) in the sham-operated group by the third week of treatment which was accompanied by a fall in creatinine clearance from 336 ± 18 to 222 ± 59 µl min-1 100 g body weight-1 (P<0.05) and a rise in fractional urinary sodium excretion from 0.2 ± 0.04 to 1.62 ± 0.35% (P<0.05) and in sodium post-proximal fractional excretion from 0.54 ± 0.09 to 4.7 ± 0.86% (P<0.05). The development of hypertension was significantly delayed and attenuated in denervated L-NAME-treated rats. This was accompanied by a striking additional increase in fractional renal sodium and potassium excretion from 0.2 ± 0.04 to 4.5 ± 1.6% and from 0.1 ± 0.015 to 1.21 ± 0.37%, respectively, and an enhanced post-proximal sodium excretion compared to the sham-operated group. These differences occurred despite an unchanged creatinine clearance and Na+ filtered load. These results suggest that bilateral renal denervation delayed and attenuated the L-NAME-induced hypertension by promoting an additional decrease in tubule sodium reabsorption in the post-proximal segments of nephrons. Much of the hypertension caused by chronic NO synthesis inhibition is thus dependent on renal nerve activity.
Resumo:
In the present study we investigated the effect of salt intake on myenteric neuron size of the colon of adult male Wistar rats. The animals were placed on either a high-salt (HS; 8%; 12 animals) or a low-salt diet (LS; 0.15%; 12 animals) for 15 or 52 weeks and blood pressure was measured. The sizes of myenteric neurons of the distal colon from both groups were measured. No difference in neuron size was observed between the HS and LS groups after 15 weeks. After 52 weeks on HS, neuron size was increased (P<0.005) when compared with the LS group. The rats also presented hypertension, which was significantly different at 52 weeks (142 ± 11 vs 119 ± 7 mmHg). These results suggest that a long time on an HS diet can significantly increase myenteric nerve cell size.
Resumo:
Sodium carboxymethylcellulose (SCMC) has been effective in reducing adhesion formation and corticosteroids reduce the inflammatory process. The objective of this study was to define the intraperitoneal (ip) effects of SCMC combined with intramuscular (im) methylprednisolone on peritoneal adhesion formation and on jejunal anastomosis healing in rats. Twenty Wistar rats (200-350 g) were divided into four groups (N = 5): groups I and III (controls) 5 and 21 days of treatment before sacrifice, respectively; groups II and IV (experimental groups) 5 and 21 days of treatment, respectively. SCMC (1%) was infused into the abdominal cavity and methylprednisolone (10 mg kg-1 day-1) was injected im daily from the day before surgery for animals of groups II and IV. All rats were submitted to a jejunal anastomosis. Sections of the anastomosis were prepared for routine histopathological analysis. The abdominal adhesion of group IV was less intense when compared with group III (P<0.0008). Anastomotic resistance was higher in groups II and IV when compared with groups I and III, respectively (P<0.05). There was no histological difference between groups I and II (exuberant granulation tissue on the serosal surface). Group III presented little peritoneal fibrinous tissue, with numerous thick collagen fibers. Group IV presented extensive although immature young fibrous tissue with rare thick collagen fibers. Sodium carboxymethylcellulose combined with corticosteroids seemed to diminish peritoneal adhesion but did not reduce anastomotic resistance.
Resumo:
We determined if the dorsal raphe nucleus (DRN) exerts tonic control of basal and stimulated sodium and water intake. Male Wistar rats weighing 300-350 g were microinjected with phosphate buffer (PB-DRN, N = 11) or 1 µg/0.2 µl, in a single dose, ibotenic acid (IBO-DRN, N = 9 to 10) through a guide cannula into the DRN and were observed for 21 days in order to measure basal sodium appetite and water intake and in the following situations: furosemide-induced sodium depletion (20 mg/kg, sc, 24 h before the experiment) and a low dose of dietary captopril (1 mg/g chow). From the 6th day after ibotenic acid injection IBO-DRN rats showed an increase in sodium appetite (12.0 ± 2.3 to 22.3 ± 4.6 ml 0.3 M NaCl intake) whereas PB-DRN did not exceed 2 ml (P < 0.001). Water intake was comparable in both groups. In addition to a higher dipsogenic response, sodium-depleted IBO-DRN animals displayed an increase of 0.3 M NaCl intake compared to PB-DRN (37.4 ± 3.8 vs 21.6 ± 3.9 ml 300 min after fluid offer, P < 0.001). Captopril added to chow caused an increase of 0.3 M NaCl intake during the first 2 days (IBO-DRN, 33.8 ± 4.3 and 32.5 ± 3.4 ml on day 1 and day 2, respectively, vs 20.2 ± 2.8 ml on day 0, P < 0.001). These data support the view that DRN, probably via ascending serotonergic system, tonically modulates sodium appetite under basal and sodium depletion conditions and/or after an increase in peripheral or brain angiotensin II.
Resumo:
Obstructive apnea (OA) can exert significant effects on renal sympathetic nerve activity (RSNA) and hemodynamic parameters. The present study focuses on the modulatory actions of RSNA on OA-induced sodium and water retention. The experiments were performed in renal-denervated rats (D; N = 9), which were compared to sham (S; N = 9) rats. Mean arterial pressure (MAP) and heart rate (HR) were assessed via an intrafemoral catheter. A catheter was inserted into the bladder for urinary measurements. OA episodes were induced via occlusion of the catheter inserted into the trachea. After an equilibration period, OA was induced for 20 s every 2 min and the changes in urine, MAP, HR and RSNA were recorded. Renal denervation did not alter resting MAP (S: 113 ± 4 vs D: 115 ± 4 mmHg) or HR (S: 340 ± 12 vs D: 368 ± 11 bpm). An OA episode resulted in decreased HR and MAP in both groups, but D rats showed exacerbated hypotension and attenuated bradycardia (S: -12 ± 1 mmHg and -16 ± 2 bpm vs D: -16 ± 1 mmHg and 9 ± 2 bpm; P < 0.01). The basal urinary parameters did not change during or after OA in S rats. However, D rats showed significant increases both during and after OA. Renal sympathetic nerve activity in S rats increased (34 ± 9%) during apnea episodes. These results indicate that renal denervation induces elevations of sodium content and urine volume and alters bradycardia and hypotension patterns during total OA in unconscious rats.