70 resultados para SNAKE-VENOMS

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coral snakes, the New World Elapidae, are included in the genera Micniroides and Micrurus. The genus Mlcrurus comprises nearly all coral snake species and those which are responsible for human snake-bite accidents. The following generalizations concerning the effects induced by their venoms, and their venom-properties can be made. Coral snake venoms are neurotoxic, producing loss of muscle strenght and death by respiratory paralysis. Local edema and necrosis are not induced nor blood coagulation or hemorrhages. Proteolysis activity is absent or of very low grade. They display phospholipase A2 activity. Nephrotoxic effects are not evoked. The main toxins from elapid venoms are postsynaptic and presynaptic neurotoxins and cardiotoxins. Phospholipases A2 endowed with myonecrotic or cardiotoxin-like properties are important toxic components from some elapid venoms. The mode of action of Micrurus frontalis, M. lemniscatus, M. corallinus and M. fulvius venoms has been investigated in isolated muscle preparations and is here discussed. It is shown that while M. frontalis and M. lemniscatus venoms must contain only neurotoxins that act at the cholinergic end-plate receptor (postsynaptic neurotoxins), M. corallinus venom also inhibits evoked acetylcholine release by the motor nerve endings (presynaptic neurotoxin-like effect) and M. fulvius induces muscle fiber membrane depolarization (cardiotoxin-like effect). The effects produced by M. corallinus and M. fulvius venoms in vivo in dogs and M. frontalis venom in dogs and monkeys are also reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The existence of mammals and reptilia with a natural resistance to snake venoms is known since a long time. This fact has been subjected to the study by several research workers. Our experiments showed us that in the marsupial Didelphis marsupialis, a mammal highly resistant to the venom of Bothrops jararaca, and other Bothrops venoms, has a genetically origin protein, a alpha-1, acid glycoprotein, now highly purified, with protective action in mice against the jararaca snake venom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the protective effect of suramin, an enzyme inhibitor and an uncoupler of G protein from receptors, on the myotoxic activity in mice of different crotalid snake venoms (A.c. laticinctus, C.v. viridis, C.d. terrificus, B. jararacussu, B. moojeni, B. alternatus, B. jararaca, L. muta). Myotoxicity was evaluated in vivo by injecting im the venoms (0.5 or 1.0 mg/kg) dissolved in physiological saline solution (0.1 ml) and measuring plasma creatine kinase (CK) activity. Two experimental approaches were used in mice (N = 5 for each group). In protocol A, 1 mg of each venom was incubated with 1.0 mg suramin (15 min, 37ºC, in vitro), and then injected im into the mice at a dose of 1.0 mg/kg (in vivo). In protocol B, venoms, 1.0 mg/kg, were injected im 15 min prior to suramin (1.0 mg/kg, iv). Before and 2 h after the im injection blood was collected by orbital puncture. Plasma was separated and stored at 4ºC for determination of CK activity using a diagnostic kit from Sigma. Preincubation of some venoms (C.v. viridis, A.c. laticinctus, C.d. terrificus and B. jararacussu) with suramin reduced (37-76%) the increase in plasma CK, except for B. alternatus, B. jararaca or L. muta venoms. Injection of suramin after the venom partially protected (34-51%) against the myotoxicity of B. jararacussu, A.c. laticinctus and C.d. terrificus venom, and did not protect against C.v. viridis, L. muta, B. moojeni, B. alternatus or B. jararaca venoms. These results show that suramin has an antimyotoxic effect against some, but not all the North and South American crotalid snake venoms studied here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neutralization of hyperalgesia induced by Bothrops jararaca and B. asper venoms was studied in rats using bothropic antivenom produced at Instituto Butantan (AVIB, 1 ml neutralizes 5 mg B. jararaca venom) and polyvalent antivenom produced at Instituto Clodomiro Picado (AVCP, 1 ml neutralizes 2.5 mg B. aspar venom). The intraplantar injection of B. jararaca and B. asper venoms caused hyperalgesia, which peaked 1 and 2 h after injection, respectively. Both venoms also induced edema with a similar time course. When neutralization assays involving the independent injection of venom and antivenom were performed, the hyperalgesia induced by B. jararaca venom was neutralized only when bothropic antivenom was administered iv 15 min before venom injection, whereas edema was neutralized when antivenom was injected 15 min or immediately before venom injection. On the other hand, polyvalent antivenom did not interfere with hyperalgesia or edema induced by B. asper venom, even when administered prior to envenomation. The lack of neutralization of hyperalgesia and edema induced by B. asper venom is not attributable to the absence of neutralizing antibodies in the antivenom, since neutralization was achieved in assays involving preincubation of venom and antivenom. Cross-neutralization of AVCP or AVIB against B. jararaca and B. asper venoms, respectively, was also evaluated. Only bothropic antivenom partially neutralized hyperalgesia induced by B. asper venom in preincubation experiments. The present data suggest that hyperalgesia and edema induced by Bothrops venoms are poorly neutralized by commercial antivenoms even when antibodies are administered immediately after envenomation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Metalloproteinases are abundant enzymes in crotaline and viperine snake venoms. They are relevant in the pathophysiology of envenomation, being responsible for local and systemic hemorrhage frequently observed in the victims. Snake venom metalloproteinases (SVMP) are zinc-dependent enzymes of varying molecular weights having multidomain organization. Some SVMP comprise only the proteinase domain, whereas others also contain a disintegrin-like domain, cysteine-rich, and lectin domains. They have strong structural similarities with both mammalian matrix metalloproteinases (MMP) and members of ADAMs (a disintegrin and metalloproteinase) group. Besides hemorrhage, snake venom metalloproteinase induce local myonecrosis, skin damage, and inflammatory reaction in experimental models. Local inflammation is an important characteristic of snakebite envenomations inflicted by viperine and crotaline snake species. Thus, in the recent years there is a growing effort to understand the mechanisms responsible for SVMP-induced inflammatory reaction and the structural determinants of this effect. This short review focuses the inflammatory effects evoked by SVMP.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A serine proteinase with thrombin-like activity was isolated from the venom of the Central American pit viper Bothrops asper. Isolation was performed by a combination of affinity chromatography on aminobenzamidine-Sepharose and ion-exchange chromatography on DEAE-Sepharose. The enzyme accounts for approximately 0.13% of the venom dry weight and has a molecular mass of 32 kDa as determined by SDS-PAGE, and of 27 kDa as determined by MALDI-TOF mass spectrometry. Its partial amino acid sequence shows high identity with snake venom serine proteinases and a complete identity with a cDNA clone previously sequenced from this species. The N-terminal sequence of the enzyme is VIGGDECNINEHRSLVVLFXSSGFL CAGTLVQDEWVLTAANCDSKNFQ. The enzyme induces clotting of plasma (minimum coagulant dose = 4.1 µg) and fibrinogen (minimum coagulant dose = 4.2 µg) in vitro, and promotes defibrin(ogen)ation in vivo (minimum defibrin(ogen)ating dose = 1.0 µg). In addition, when injected intravenously in mice at doses of 5 and 10 µg, it induces a series of behavioral changes, i.e., loss of the righting reflex, opisthotonus, and intermittent rotations over the long axis of the body, which closely resemble the `gyroxin-like' effect induced by other thrombin-like enzymes from snake venoms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pathogenesis of the renal lesion upon envenomation by snakebite has been related to myolysis, hemolysis, hypotension and/or direct venom nephrotoxicity caused by the venom. Both primary and continuous cell culture systems provide an in vitro alternative for quantitative evaluation of the toxicity of snake venoms. Crude Crotalus vegrandis venom was fractionated by molecular exclusion chromatography. The toxicity of C. vegrandis crude venom, hemorrhagic, and neurotoxic fractions were evaluated on mouse primary renal cells and a continuous cell line of Vero cells maintained in vitro. Cells were isolated from murine renal cortex and were grown in 96 well plates with Dulbecco's Modified Essential Medium (DMEM) and challenged with crude and venom fractions. The murine renal cortex cells exhibited epithelial morphology and the majority showed smooth muscle actin determined by immune-staining. The cytotoxicity was evaluated by the tetrazolium colorimetric method. Cell viability was less for crude venom, followed by the hemorrhagic and neurotoxic fractions with a CT50 of 4.93, 18.41 and 50.22 µg/mL, respectively. The Vero cell cultures seemed to be more sensitive with a CT50 of 2.9 and 1.4 µg/mL for crude venom and the hemorrhagic peak, respectively. The results of this study show the potential of using cell culture system to evaluate venom toxicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coral snakes (Micrurus spp.) are the main representatives of the Elapidae in South America. However, bites by these snakes are uncommon. We retrospectively reviewed the data from 11 individuals bitten by coral snakes over a 20-year period; four were confirmed (snake brought for identification) and seven were highly suspected (neuromuscular manifestations) cases of elapid envenoming. The cases were classified as dry-bite (n = 1, caused by M. lemniscatus; did not receive antivenom), mild (n = 2, local manifestations with no acute myasthenic syndrome; M. frontalis and Micrurus spp.), moderate (n = 5, mild myasthenia) or severe (n = 3, important myasthenia; one of them caused by M. frontalis). The main clinical features upon admission were paresthesia (local, n = 9; generalized, n = 2), local pain (n = 8), palpebral ptosis (n = 8), weakness (n = 4) and inability to stand up (n = 3). No patient developed respiratory failure. Antivenom was used in ten cases, with mild early reactions occurring in three. An anticholinesterase drug was administered in the three severe cases, with a good response in two. No deaths were observed. Despite the high toxicity of coral snake venoms, the prognosis following envenoming is good. In serious bites by M. frontalis or M. lemniscatus, the venom of which acts postsynaptically, anticholinesterases may be useful as an ancillary measure if antivenom is unavailable, if there is a delay in obtaining a sufficient amount, or in those patients given the highest recommended doses of antivenom without improvement of the paralysis or with delayed recovery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe the isolation of crotoxin, a presynaptic B-neurotoxin, as well as its subunits B (crotactine) and A (crotapotin) from lyophilized Crotalus durissus terrificus venom by a single-step preparative isoelectric focusing procedure. From 98 mg of dried venom protein 20.1 mg of crotactine and 13.1 mg of crotapotin were recovered in the first step of focalization and 4.2 mg in a second run. These values correspond to 35.7% of the total venom protein applied. Crotactine separated in the 9.3-7.0 pH range (tubes 1-6) and crotapotin in the 1.8-2.8 pH range (tubes 15-19) and both were homogeneous by SDS-PAGE and N-terminal amino acid analysis. Crotactine, a 12-kDa protein, presented hemolytic and phospholipase A2 activity. Thus, using isoelectric focusing we simultaneously purified both toxins in high yields. This method can be used as an alternative for the purification and characterization of proteins from other snake venoms under conditions in which biological activity is retained

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metalloproteinases and disintegrins are important components of most viperid and crotalid venoms. Large metalloproteinases referred to as MDC enzymes are composed of an N-terminal Metalloproteinase domain, a Disintegrin-like domain and a Cys-rich C-terminus. In contrast, disintegrins are small non-enzymatic RGD-containing cysteine-rich polypeptides. However, the disintegrin region of MDC enzymes bears a high degree of structural homology to that of the disintegrins, although it lacks the RGD motif. Despite these differences, both components share the property of being able to recognize integrin cell surface receptors and thereby to inhibit integrin-dependent cell reactions. Recently, several membrane-bound MDC enzymes, closely related to soluble venom MDC enzymes, have been described in mammalian cells. This group of membrane-anchored mammalian enzymes is also called the ADAM family of proteins due to the structure revealing A Disintegrin And Metalloproteinase domains. ADAMs are involved in the shedding of molecules from the cell surface, a property which is also shared by some venom MDC enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports two cases of afibrinogenemia with normal platelet count following Crotalus durissus terrificus, snake bite Both patients presented high output acute renal failure and case two also had increased blood levels of CPK and LDH compatible with the diagnosis of rhabdomyolysis. Case one was given an unknown amount of antivenom and was treated with epsilonaminocaproic acid and a fresh whole blood transfusion and showed recovery of the coagulation disturbance 40 hours following these measures. Case two was given an adequate amount of crotalide antivenom and the coagulation tests performed 12 hours later showed a normal partial thromboplastin time and fibrinogen 86 mg/100ml. Case one presented no haemorrhagic disturbances. Case two presented persistent bleeding following venopuncture and after removal of impetigo crust in the legs. Acute renal failure was treated conservatively and both patients were discharged from the hospital with recovery of the renal function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A retrospective survey of 473 cases of snake bite admitted to a Brazilian teaching hospital from 1984 to 1990 revealed 91 cases of bite without envenoming and/or caused by non-venomous snakes. In 17 of these cases the snake was identified, and one patient was bitten by a snake-like reptile (Amphisbaena mertensii). In 43 cases diagnosis was made on clinical grounds (fang marks in the absence of signs of envenoming). The other 30 cases were of patients who complained of being bitten but who did not show any sign of envenoming or fang mark. Most cases occurred in men (66;73%), in the 10-19 years age group (26;29%), in the lower limbs (51/74;69%), between 6 A. M. and 2 P.M. (49;61%) and in the month of April (16; 18%). One patient bitten by Philodryas olfersii developed severe local pain, swelling and redness at the site of the bite, with normal clotting time. The patient bitten by Drymarcon corais was misdiagnosed as being bitten by a snake of the genus Bothrops, was given the specific antivenom, and developed anaphylaxis. One patient bitten by Sibynomorphus mikanii presented prolonged clotting time, and was also given antivenom as a case of Bothrops bite. Correct identification of venomous snakes by physicians is necessary to provide correct treatment to victims of snake bite, avoiding unnecessary distress to the patient, and overprescription of antivenom, which may eventually cause severe untoward effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antivenom in order to be effective in the treatment of coral snake accidents must be injected very soon after the bite owing to the rapid rate of absorption of the venom neurotoxins. As this is not always possible, other forms of treatment besides serotherapy must be employed to avoid asphyxia and death. Neostigmine and artificial respiration are used for this purpose. Neostigmine restores neuromuscular transmission if the venom-induced blockade results from a reversible interaction of its neurotoxins with the end-plate receptors. This is the mechanism of the neuromuscular blockade produced by the venom of M. frontalis snakes from centereastern and southern Brazil, and Argentine. Neostigmine is able, therefore, to antagonize the blockade, and has been shown to be very effective in the treatment of the experimental envenomation of dogs and monkeys. In the present communication, two cases of M. frontalis accidents treated with antivenom and neostigmine are reported. In both, neostigmine was successful in producing regression of the paralysis, confirming the effectiveness shown in the treatment of the poisoning induced in animals by M. frontalis venom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY Ophidic accidents are an important public health problem due to their incidence, morbidity and mortality. An increasing number of cases have been registered in Brazil in the last few years. Several studies point to the importance of knowing the clinical complications and adequate approach in these accidents. However, knowledge about the risk factors is not enough and there are an increasing number of deaths due to these accidents in Brazil. In this context, acute kidney injury (AKI) appears as one of the main causes of death and consequences for these victims, which are mainly young males working in rural areas. Snakes of the Bothrops and Crotalus genera are the main responsible for renal involvement in ophidic accidents in South America. The present study is a literature review of AKI caused by Bothrops and Crotalus snake venom regarding diverse characteristics, emphasizing the most appropriate therapeutic approach for these cases. Recent studies have been carried out searching for complementary therapies for the treatment of ophidic accidents, including the use of lipoic acid, simvastatin and allopurinol. Some plants, such as Apocynaceae, Lamiaceae and Rubiaceae seem to have a beneficial role in the treatment of this type of envenomation. Future studies will certainly find new therapeutic measures for ophidic accidents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of anti-snake venom from large mammal's blood has been found to be low-yielding and arduous, consequently, antivenom immunoglobulins for treatment are achieved regularly as polyvalent serum. We have standardized an undemanding technique for making purified immunoglobulin IgY antivenom consisting of polyclonal antibodies against coral snake venom in the egg yolk of immunized hens. We have adapted a reported process of antibody purification from egg yolks, and achieved 90% antibody purity. The customized technique consisted of the removal of lipids from distilled water-diluted egg yolks by a freeze–thaw sequence. The specific immunoglobulins were present in the egg yolk for up to 180 days postimmunization. Therefore, by means of small venom quantities, a significant amount of immunoglobulins were found in an adequately purified state (The obtained material contained about 90% pure IgY). The antigen binding of the immunoglobulins was detected by a double immunodiffusion test. Titers of antibodies in the yolk were estimated with a serum protection assay (Median effective dose = ED50) (ED50= 477 mg/kg). Given that breeding hens is economically feasible, egg gathering is noninvasive and the purification of IgY antibodies is quick and easy, chicken immunization is an excellent alternative for the production of polyclonal antibodies. To the best of our knowledge, this is the first coral snake antivenom prepared in birds.