115 resultados para SELECTION EFFICIENCY
em Scielo Saúde Pública - SP
Resumo:
The objective of this work was to validate microsatellite markers associated with resistance to soybean cyst nematode (Heterodera glycines Ichinohe) races 3 and 14, in soybean (Glycine max L.) genotypes, for use in marker-assisted selection (MAS) programs. Microsatellites of soybean linkage groups A2, D2 and G were tested in two populations, and their selection efficiencies were determined. The populations were 65 F2:3 families from Msoy8001 (resistant) x Conquista (susceptible) cross, and 66 F2:3 families of S5995 (resistant) x Renascença (susceptible) cross, evaluated for resistance to races 3 and 14, respectively. Families with female index up to 30% were considered moderately resistant. Markers of A2 and G linkage groups were associated with resistance to race 3. Markers Satt309 and GMENOD2B explained the greatest proportion of phenotypic variance in the different groups. The combinations Satt309+GMENOD2B and Satt309+Satt187 presented 100% selection efficiency. Resistance to race 14 was associated with markers of G linkage group, and selection efficiency in the Satt309+Satt356 combination was 100%. The selection differential obtained by phenotypic and marker assisted selection showed that both can result in similar gains.
Resumo:
The objetive of this work was to evaluate the influence of intergenotypic competition in open-pollinated families of Eucalyptus and its effects on early selection efficiency. Two experiments were carried out, in which the timber volume was evaluated at three ages, in a randomized complete block design. Data from the three years of evaluation (experiment 1, at 2, 4, and 7 years; and experiment 2, at 2, 5, and 7 years) were analyzed using mixed models. The following were estimated: variance components, genetic parameters, selection gains, effective number, early selection efficiency, selection gain per unit time, and coincidence of selection with and without the use of competition covariates. Competition effect was nonsignificant for ages under three years, and adjustment using competition covariates was unnecessary. Early selection for families is effective; families that have a late growth spurt are more vulnerable to competition, which markedly impairs ranking at the end of the cycle. Early selection is efficient according to all adopted criteria, and the age of around three years is the most recommended, given the high efficiency and accuracy rate in the indication of trees and families. The addition of competition covariates at the end of the cycle improves early selection efficiency for almost all studied criteria.
Resumo:
Based on a polygenic system of a diploid species, without epistasis, and a population in Hardy-Weinberg equilibrium, without inbreeding and under linkage equilibrium, it can be shown that: (1) the narrow sense heritability at half-sib family level is equal to the square of the correlation coefficient between family mean and the additive genetic value of its common parent; (2) the narrow sense heritability at full-sib family level is equal to the square of the correlation coefficient between family mean and the mean of the additive genetic values of its parents; (3) the narrow sense heritability at Sn family level is exactly equal to the square of the correlation coefficient between family mean and the additive genetic value of its parent only in absence of dominance or when allele frequencies are equal; and (4) the broad sense heritability at full-sib or Sn family level can be used to analyze selection efficiency, since the progeny genotypic mean is, in general, a good indicator of parents, or Sn-1 plant superiority with respect to the frequency of favorable genes.
Resumo:
The present work aimed to characterize and identify QTLs for wood quality and growth traits in E. grandis x E. urophylla hybrids. For this purpose a RAPD linkage map was developed for the hybrids (LOD=3 and r=0.40) containing 52 markers and 12 linkage groups. Traits related to wood quality and growth were evaluated in the QTL analyses. QTL analyses were performed using chi-square tests, single-marker, interval mapping and composite interval mapping analyses. All approaches led to the identification of similar QTLs associated with wood density, cellulose pulp yield and percentage of extractives, which were detected and confirmed by both the interval mapping and composite interval mapping methodologies. Some QTLs regions were confirmed only by the composite interval mapping methodology: percentage of soluble lignin, percentage of insoluble lignin, CBH and total height. Overlapping QTLs regions were detected, and these, can be the result of major genes involved in the regulation and control of the growth traits by epistatic interactions. In order to evaluate the effect of early selection using RAPD molecular data, molecular markers adjacent to QTLs were used genotype selection. The analysis of selection differential values suggests that for all the traits the phenotypic selection at seven years should generate larger genetic gains than early selection assisted by molecular markers and the combination of the strategies should elevate the selection efficiency.
Resumo:
ABSTRACT This study aimed to estimate the genetic correlation among selection ages (juvenile - adult) and efficiency of early selection for the height, diameter, and volume traits of individuals from Pinus taeda families propagated via somatic embryogenesis. This study was carried out by genetic-statistical analysis, estimation procedure of variance (Reml), and prediction components of breeding values (Blup), using the Selegen-Reml/Blup software. Genetic correlations among juvenile ages and rotation age were performed by applying the linear model developed by Lambeth (1980). In accordance with results of the established model, the early selection can be performed in clones of Pinus taeda with high selection efficiency. Ages from 4 to 6 years old are enough to select Pinus taeda clones propagated via somatic embryogenesis for harvesting at 8 and 12 years old; and 6 to 10 years old are enough to select them for harvesting at 20 years old. On the basis of the genetic correlations estimates from the environments, the clones' selection of Pinus taeda propagated via somatic embryogenesis should be developed specifically for each environment. The clones' selection can be performed considering the diameter due to the high correlation between volume and diameter.
Resumo:
This study aimed to evaluate the water depth selection during foraging, the efficiency in prey capture, and the food items captured by Casmerodius albus (Linnaeus, 1758) and Egretta thula (Molina, 1782). The work was conducted at an urban lagoon, Lagoa Rodrigo de Freitas, Rio de Janeiro. Four transects were made each month (two in the morning and two in the afternoon) for six months. When the birds were detected foraging, the water depth and the types of prey captured were recorded. There was no significant relationship between the foraging efficiencies of the two species. However, they differed in relation to the water depth when foraging, and also in the food items captured. Casmerodius albus captured mainly fishes while Egretta thula captured mainly invertebrates. The results suggest that the differences in water depth when foraging and the food items captured allow a differential use of the food resources available by C. albus and E. thula at Lagoa Rodrigo de Freitas.
Resumo:
This study aimed to evaluate the efficiency of simultaneous selection (selection indices) using estimated genetic gains in yellow passion fruit and to make a comparison between the methodologies of Mulamba & Mock and Elston. The study was conducted with 26 sib progenies of yellow passion fruit for intrinsic production characteristics including fruit number, fruit mass, fruit length and diameter, and for the fruit characteristics skin thickness, soluble solids and acidity. Two methodologies were applied: first, in the joint analysis of fruit characteristics and of intrinsic production characteristics in a single phase of selection; and second, in the analysis in two phases, in which priority was given to the intrinsic production characteristics in the first phase, and later, in the second phase, the best fruit characteristics were chosen among the progenies of the first phase. The analysis of variance was applied to the data to detect genetic variability among progenies. The Elston's selection indice was unable to provide distribution of genetic gains consistent with the purposes of the study, as it selected a single progeny of passion fruit. However, the index based on the sum of ranks of Mulamba & Mock was more suitable, as it provided a balanced distribution of gains, selecting a larger number of progenies. The methodology of selection using indices is advantageous in passion fruit, since it contributes to higher genetic gains for all the traits evaluated, and the selection in a single phase was proved efficient for progeny selection.
Resumo:
n plant breeding programs that aim to obtain cultivars with nitrogen (N) use efficiency, the focus is on methods of selection and experimental procedures that present low cost, fast response, high repeatability, and can be applied to a large number of cultivars. Thus, the objectives of this study were to classify maize cultivars regarding their use efficiency and response to N in a breeding program, and to validate the methodology with contrasting doses of the nutrient. The experimental design was a randomized block with the treatments arranged in a split-plot scheme with three replicates and five N doses (0, 30, 60, 120 and 200 kg ha-1) in the plots, and six cultivars in subplots. We compared a method examining the efficiency and response (ER) with two contrasting doses of N. After that, the analysis of variance, mean comparison and regression analysis were performed. In conclusion, the method of the use efficiency and response based on two N levels classifies the cultivars in the same way as the regression analysis, and it is appropriate in plant breeding routine. Thus, it is necessary to identify the levels of N required to discriminate maize cultivars in conditions of low and high N availability in plant breeding programs that aim to obtain efficient and responsive cultivars. Moreover, the analysis of the interaction genotype x environment at experiments with contrasting doses is always required, even when the interaction is not significant.
Resumo:
Influence of male nutritional conditions on the performance and alimentary selection of wild females of Anastrepha obliqua (Macquart) (Diptera, Tephritidae). The behavior of A. obliqua females is regulated by endogenous and exogenous factors and among these the presence of males. Experiments were carried out to investigate whether the presence of males and their nutritional condition may affect the behavior of self-selection feeding and the performance of A. obliqua females. Females were sorted in groups containing yeast-deprived females and males, and non-yeast-deprived females and males. The females were maintained apart from the males by a transparent plastic screen. Several yeast and sucrose combinations were offered to the females in a single diet block or in separate blocks. Ingestion, egg production, longevity and diet efficiency were determined. The non-yeast-deprived males positively influenced the females performance when the latter were fed with yeast and sucrose in distinct diet blocks. Performance was better in the groups without males and with yeast-deprived males where the females could not select the nutrient proportions (yeast and sucrose in a single diet block).
Resumo:
The genetic diversity of ten Bradyrhizobium strains was evaluated for tolerance to high temperatures, to different salinity levels and for the efficiency of symbiosis with cowpea plants (Vigna unguiculata (L.) Walp.). Eight of these strains were isolated from nodules that appeared on cowpea after inoculation with suspensions of soil sampled from around the root system of Sesbania virgata (wand riverhemp) in ecosystems of South Minas Gerais. The other two strains used in our analyses as references, were from the Amazon and are currently recommended as cowpea inoculants. Genetic diversity was analyzed by amplifying repetitive DNA elements with the BOX primer, revealing high genetic diversity with each strain presenting a unique band profile. Leonard jar assays showed that the strains UFLA 03-30 and UFLA 03-38 had the highest N2-fixing potentials in symbiosis with cowpea. These strains had more shoot and nodule dry matter, more shoot N accumulation, and a higher relative efficiency than the strains recommended as inoculants. All strains grew in media of pH levels ranging from 4.0 to 9.0. The strains with the highest N2-fixing efficiencies in symbiosis with cowpea were also tolerant to the greatest number of antibiotics. However, these strains also had the lowest tolerance to high salt concentrations. All strains, with the exceptions of UFLA 03-84 and UFLA 03-37, tolerated temperatures of up to 40 ºC. The genetic and phenotypic characteristics of the eight strains isolated from soils of the same region were highly variable, as well as their symbiotic efficiencies, despite their common origin. This variability highlights the importance of including these tests in the selection of cowpea inoculant strains.
Resumo:
The soil water available to crops is defined by specific values of water potential limits. Underlying the estimation of hydro-physical limits, identified as permanent wilting point (PWP) and field capacity (FC), is the selection of a suitable method based on a multi-criteria analysis that is not always clear and defined. In this kind of analysis, the time required for measurements must be taken into consideration as well as other external measurement factors, e.g., the reliability and suitability of the study area, measurement uncertainty, cost, effort and labour invested. In this paper, the efficiency of different methods for determining hydro-physical limits is evaluated by using indices that allow for the calculation of efficiency in terms of effort and cost. The analysis evaluates both direct determination methods (pressure plate - PP and water activity meter - WAM) and indirect estimation methods (pedotransfer functions - PTFs). The PTFs must be validated for the area of interest before use, but the time and cost associated with this validation are not included in the cost of analysis. Compared to the other methods, the combined use of PP and WAM to determine hydro-physical limits differs significantly in time and cost required and quality of information. For direct methods, increasing sample size significantly reduces cost and time. This paper assesses the effectiveness of combining a general analysis based on efficiency indices and more specific analyses based on the different influencing factors, which were considered separately so as not to mask potential benefits or drawbacks that are not evidenced in efficiency estimation.
Resumo:
The objective of this study was to evaluate the efficiency of spatial statistical analysis in the selection of genotypes in a plant breeding program and, particularly, to demonstrate the benefits of the approach when experimental observations are not spatially independent. The basic material of this study was a yield trial of soybean lines, with five check varieties (of fixed effect) and 110 test lines (of random effects), in an augmented block design. The spatial analysis used a random field linear model (RFML), with a covariance function estimated from the residuals of the analysis considering independent errors. Results showed a residual autocorrelation of significant magnitude and extension (range), which allowed a better discrimination among genotypes (increase of the power of statistical tests, reduction in the standard errors of estimates and predictors, and a greater amplitude of predictor values) when the spatial analysis was applied. Furthermore, the spatial analysis led to a different ranking of the genetic materials, in comparison with the non-spatial analysis, and a selection less influenced by local variation effects was obtained.
Resumo:
The objective of this work was to determine soybean resistance inheritance to Heterodera glycines Ichinohe (soybean cyst nematode - SCN) races 3 and 9, as well as to evaluate the efficiency of direct and indirect selection in a soybean population of 112 recombinant inbred lines (RIL) derived from the resistant cultivar Hartwig. The experiment was conducted in a completely randomized design, in Londrina, PR, Brazil. The estimated narrow-sense heritabilities for resistance to races 3 and 9 were 80.67 and 77.97%. The genetic correlation coefficient (r g = 0.17; p<0.01) shows that some genetic components of resistance to these two races are inherited together. The greatest genetic gain by indirect selection was obtained to race 9, selecting to race 3 due to simpler inheritance of resistance to race 9 and not because these two races share common resistance genes. The resistance of cultivar Hartwig to races 3 and 9 is determined by 4 and 2 genes, respectively. One of these genes confers resistance to both races, explaining a fraction of the significant genetic correlation found between resistance to these SCN races. The inheritance pattern described indicates that selection for resistance to SCN must be performed for each race individually.
Resumo:
The objective of this work was to determine the relative importance of phosphorus acquisition efficiency (PAE - plant P uptake per soil available P), and phosphorus internal utilization efficiency (PUTIL - grain yield per P uptake) in the P use efficiency (PUE - grain yield per soil available P), on 28 tropical maize genotypes evaluated at three low P and two high P environments. PAE was almost two times more important than PUTIL to explain the variability observed in PUE, at low P environments, and three times more important at high P environments. These results indicate that maize breeding programs, to increase PUE in these environments, should use selection index with higher weights for PAE than for PUTIL. The correlation between these two traits showed no significance at low or at high P environments, which indicates that selection in one of these traits would not affect the other. The main component of PUTIL was P quotient of utilization (grain yield per grain P) and not the P harvest index (grain P per P uptake). Selection to reduce grain P concentration should increase the quotient of utilization and consequently increase PUTIL.
Resumo:
The objective of this work was to evaluate the carbon isotope fractionation as a phenomic facility for cotton selection in contrasting environments and to assess its relationship with yield components. The experiments were carried out in a randomized block design, with four replicates, in the municipalities of Santa Helena de Goiás (SHGO) and Montividiu (MONT), in the state of Goiás, Brazil. The analysis of carbon isotope discrimination (Δ) was performed in 15 breeding lines and three cultivars. Subsequently, the root growth kinetic and root system architecture from the selected genotypes were determined. In both locations, Δ analyses were suitable to discriminate cotton genotypes. There was a positive correlation between Δ and seed-cotton yield in SHGO, where water deficit was more severe. In this site, the negative correlations found between Δ and fiber percentage indicate an integrative effect of gas exchange on Δ and its association with yield components. As for root robustness and growth kinetic, the GO 05 809 genotype performance contributes to sustain the highest values of Δ found in MONT, where edaphoclimatic conditions were more suitable for cotton. The use of Δ analysis as a phenomic facility can help to select cotton genotypes, in order to obtain plants with higher efficiency for gas exchange and water use.