14 resultados para S-adenosylmethionine Decarboxylase

em Scielo Saúde Pública - SP


Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is an urgent need for new drugs for the chemotherapy of human African trypanosomiasis, Chagas disease and leishmaniasis. Progress has been made in the identification and characterization of novel drug targets for rational chemotherapy and inhibitors of trypanosomatid glycosomal enzymes, trypanothione reductase, ornithine decarboxylase, S-adenosylmethionine decarboxylase, cysteine proteases and of the purine and sterol biosynthetic pathways. However, less attention has been paid to the pharmacological aspects of drug design or to the use of drug delivery systems in the chemotherapy of African trypanosomiasis and Chagas disease. A review of research on pharmacology and drug delivery systems shows that there are new opportunities for improving the chemotherapy of these diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluated the porphyrinogenic ability of ethanol (20% in drinking water) per se, its effect on the development of sporadic porphyria cutanea tarda induced by hexachlorobenzene in female Wistar rats (170-190 g, N = 8/group), and the relationship with hepatic damage. Twenty-five percent of the animals receiving ethanol increased up to 14-, 25-, and 4.5-fold the urinary excretion of delta-aminolevulinate, porphobilinogen, and porphyrins, respectively. Ethanol exacerbated the precursor excretions elicited by hexachlorobenzene. Hepatic porphyrin levels increased by hexachlorobenzene treatment, while this parameter only increased (up to 90-fold) in some of the animals that received ethanol alone. Ethanol reduced the activities of uroporphyrinogen decarboxylase, delta-aminolevulinate dehydrase and ferrochelatase. In the ethanol group, many of the animals showed a 30% decrease in uroporphyrinogen activity; in the ethanol + hexachlorobenzene group, this decrease occurred before the one caused by hexachlorobenzene alone. Ethanol exacerbated the effects of hexachlorobenzene, among others, on the rate-limiting enzyme delta-aminolevulinate synthetase. The plasma activities of enzymes that are markers of hepatic damage were similar in all drug-treated groups. These results indicate that 1) ethanol exacerbates the biochemical manifestation of sporadic hexachlorobenzene-induced porphyria cutanea tarda; 2) ethanol per se affects several enzymatic and excretion parameters of the heme metabolic pathway; 3) since not all the animals were affected to the same extent, ethanol seems to be a porphyrinogenic agent only when there is a predisposition, and 4) hepatic damage showed no correlation with the development of porphyria cutanea tarda.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study was to determine whether the duration of disease has any influence on the prevalence of glutamic acid decarboxylase autoantibodies (GADA) in Brazilian patients with type 1 diabetes (T1D) and variable disease duration. We evaluated 83 patients with T1D. All participants were interviewed and blood was obtained for GADA measurement by a commercial radioimmunoassay (RSR Limited, Cardiff, UK). Four groups of patients were established according to disease duration: A) 1-5 years of disease (N = 24), B) 6-10 years of disease (N = 19), C) 11-15 years of disease (N = 25), and D) >15 years of disease (N = 15). GADA prevalence and its titers were determined in each group. GADA was positive in 38 patients (45.8%) and its frequency did not differ between the groups. The prevalence was 11/24 (45.8%), 8/19 (42.1%), 13/25 (52%), and 6/15 (40%) in groups A, B, C, and D, respectively (P = 0.874). Mean GADA titer was 12.54 ± 11.33 U/ml for the sample as a whole and 11.95 ± 11.8, 12.85 ± 12.07, 10.57 ± 8.35, and 17.45 ± 16.1 U/ml for groups A, B, C, and D, respectively (P = 0.686). Sex, age at diagnosis or ethnic background had no significant effect on GADA (+) frequency. In conclusion, in this transversal study, duration of disease did not affect significantly the prevalence of GADA or its titers in patients with T1D after one year of diagnosis. This was the first study to report this finding in the Brazilian population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To efficiently examine the association of glutamic acid decarboxylase antibody (GADA) positivity with the onset and progression of diabetes in middle-aged adults, we performed a case-cohort study representing the ~9-year experience of 10,275 Atherosclerosis Risk in Communities Study participants, initially aged 45-64 years. Antibodies to glutamic acid decarboxylase (GAD65) were measured by radioimmunoassay in 580 incident diabetes cases and 544 non-cases. The overall weighted prevalence of GADA positivity (³1 U/mL) was 7.3%. Baseline risk factors, with the exception of smoking and interleukin-6 (P £ 0.02), were generally similar between GADA-positive and -negative individuals. GADA positivity did not predict incident diabetes in multiply adjusted (HR = 1.04; 95%CI = 0.55, 1.96) proportional hazard analyses. However, a small non-significant adjusted risk (HR = 1.29; 95%CI = 0.58, 2.88) was seen for those in the highest tertile (³2.38 U/mL) of positivity. GADA-positive and GADA-negative non-diabetic individuals had similar risk profiles for diabetes, with central obesity and elevated inflammation markers, aside from glucose, being the main predictors. Among diabetes cases at study's end, progression to insulin treatment increased monotonically as a function of baseline GADA level. Overall, being GADA positive increased risk of progression to insulin use almost 10 times (HR = 9.9; 95%CI = 3.4, 28.5). In conclusion, in initially non-diabetic middle-aged adults, GADA positivity did not increase diabetes risk, and the overall baseline profile of risk factors was similar for positive and negative individuals. Among middle-aged adults, with the possible exception of those with the highest GADA levels, autoimmune pathophysiology reflected by GADA may become clinically relevant only after diabetes onset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA hypomethylation may activate oncogene transcription, thus promoting carcinogenesis and tumor development. S-adenosylmethionine (SAM) is a methyl donor in numerous methylation reactions and acts as an inhibitor of intracellular demethylase activity, which results in hypermethylation of DNA. The main objectives of this study were to determine whether DNA hypomethylation correlated with vascular endothelial growth factor-C (VEGF-C) expression, and the effect of SAM on VEGF-C methylation and gastric cancer growth inhibition. VEGF-C expression was assayed by Western blotting and RT-qPCR in gastric cancer cells, and by immunohistochemistry in tumor xenografts. VEGF-C methylation was assayed by bisulfite DNA sequencing. The effect of SAM on cell apoptosis was assayed by flow cytometry analyses and its effect on cancer growth was assessed in nude mice. The VEGF-C promoters of MGC-803, BGC-823, and SGC-7901 gastric cancer cells, which normally express VEGF-C, were nearly unmethylated. After SAM treatment, the VEGF-C promoters in these cells were highly methylated and VEGF-C expression was downregulated. SAM also significantly inhibited tumor growthin vitro and in vivo. DNA methylation regulates expression of VEGF-C. SAM can effectively induce VEGF-C methylation, reduce the expression of VEGF-C, and inhibit tumor growth. SAM has potential as a drug therapy to silence oncogenes and block the progression of gastric cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L-glutaminase and glutamic acid decarboxylase (GAD) catalyzes the hydrolysis of L-glutamine and glutamate, respectively. L-glutaminase widely used in cancer therapy along with a combination of other enzymes and most importantly these enzymes were used in food industries, as a major catalyst of bioconversion. The current investigation was aimed to screen and select L-glutaminase, and GAD producing lactic acid bacteria (LAB). A total of 338 LAB were isolated from fermented meat, fermented fish, fermented soya bean, fermented vegetables and fruits. Among 338 isolates, 22 and 237 LAB has been found to be positive for L-glutaminase and GAD, respectively. We found that 30 days of incubation at 35 ºC and pH 6.0 was the optimum condition for glutaminase activity by G507/1. G254/2 was found to be the best for GAD activity with the optimum condition of pH 6.5, temperature 40 ºC and ten days of incubation. These LAB strains, G507/1 and G254/2, were identified as close relative of Lactobacillus brevis ATCC 14869 and Lactobacillus fermentum NBRC 3956, respectively by 16S rRNA sequencing. Further, improvements in up-stream of the fermentation process with these LAB strains are currently under development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Porphyria cutanea tarda (PCT) is caused by inherited or acquired partial deficiency of the uroporphyrinogen-decarboxylase (Uro-D) enzyme activity. It is the most common form of porphyria. The main triggering factors to the development of porphyria cutanea tarda are alcohol, hepatitis C virus and human immunodeficiency virus. There are several reports of PCT associated with drugs, among them, antiretroviral therapy. We describe three HIV-positive patients, which showed photosensitivity as well as the emergence of tense blisters on sun-exposed areas during the use of highly active antiretroviral therapy (HAART) and discuss the possibility of PCT after the use of these drugs by those patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed a model for designing antimalarial drugs based on interference with an essential metabolism developed by Plasmodium during its intraerythrocytic cycle, phospholipid (PL) metabolism. The most promising drug interference is choline transporter blockage, which provides Plasmodium with a supply of precursor for synthesis of phosphatidylcholine (PC), the major PL of infected erythrocytes. Choline entry is a limiting step in this metabolic pathway and occurs by a facilitated-diffusion system involving an asymmetric carrier operating according to a cyclic model. Choline transport in the erythrocytes is not sodium dependent nor stereospecific as demonstrated using stereoisomers of alpha and beta methylcholine. These last two characteristics along with distinct effects of nitrogen substitution on transport rate demonstrate that choline transport in the infected erythrocyte possesses characteristics quite distinct from that of the nervous system. This indicates a possible discrimination between the antimalarial activity (inhibition of choline transport in the infected erythrocyte) and a possible toxic effect through inhibition of choline entry in synaptosomes. Apart from the de novo pathway of choline, PC can be synthesized by N-methylation from phosphatidylethanolamine (PE). There is a de novo pathway for PE biosynthesis from ethanolamine in infected cells but phosphatidylserine (PS) decarboxylation also occurs. In addition, PE can be directly and abundantly synthesized from serine decarboxylation into ethanolamine, a pathway which is absent from the host. The variety of the pathways that exist for the biosynthesis of one given PL led us to investigate whether an equilibrium can occur between all PL metabolic pathways. Indeed, if alternative (compensative) pathway(s) can operate after blockage of the de novo PC biosynthesis pathway this would indicate a potential mechanism for resistance acquisition. Up until now, there is no evidence of such a compensative process occurring in Plasmodium-infected erythrocytes under physiological conditions. Besides, the discovery of a highly parasite-specific pathway (serine decarboxylation and the presence of PS synthase) constitutes a very attractive and promising target, which could be attacked if resistances are built up against choline analogs. Indeed, potential inhibitions of the serine decarboxylase pathway could be very useful in acting instead of, or in surgery with, choline analogs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biochemical and serological characteristics, virulence properties, and genetic relatedness of Shiga toxin-producing Escherichia coli (STEC) strains isolated in São Paulo, from April 1989 through March 1990, were determined. This is also the first report on clinic findings of human STEC infections in Brazil. The only three STEC strains identified in that period were lysine decarboxylase negative, belonged to serotype O111ac: non-motile, were Stx1 producers, carried the eae and astA genes, and 2 of them also presented the EHEC-hly sequence. The children carrying STEC were all boys, with less than two years old, and had no previous history of hospitalization. None of them presented blood in stools. Vomiting, cough and coryza were the most common clinical manifestations observed. Although the STEC strains were isolated during summer months, and presented similar phenotypic and genotypic characteristics, carbohydrate fermentation patterns and PFGE analysis suggested that these diarrheal episodes were not caused by a single clone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of intracellular free polyamine (putrescine and spermidine) pools in multiple resistance to aminoglycoside antibiotics was investigated among in vitro selected kanamycin-resistant Escherichia coli J53 mutants expressing diminished oligopeptide-binding protein (OppA) levels and/or defective ornithine decarboxylase (ODC) activity. The results suggest that diminished OppA content, but not defective ODC activity expression, increased the relative concentration of free spermidine as compared to the wild type strain. Moreover, by adding exogenous polyamines or polyamine synthesis inhibitors to cultures with different mutant strains, a direct relationship between the intracellular OppA levels and resistance to kanamycin was revealed. Collectively these results further suggest a complex relation among OppA expression, aminoglycoside resistance and polyamine metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type 1 diabetes, as an autoimmune disease, presents several islet cell-specific autoantibodies such as islet cell antibody (ICA), anti-insulin, anti-glutamic acid decarboxylase (GAD) and the antibody (Ab) against tyrosine phosphatase (PTP)-like protein known as ICA-512 (IA-2). In order to determine the frequency of the anti-GAD and anti-IA-2 autoantibodies in Brazilian type 1 diabetes patients we studied 35 diabetes mellitus (DM) type 1 patients with recent-onset disease (£12 months) and 37 type 1 diabetes patients with long-duration diabetes (>12 months) who were compared to 12 children with normal fasting glucose. Anti-GAD65 and anti-IA-2 autoantibodies were detected with commercial immunoprecipitation assays. The frequency of positive results in recent-onset DM type 1 patients was 80.0% for GADAb, 62.9% for IA-2Ab and 82.9% for GADAb and/or IA-2Ab. The long-duration type 1 diabetes subjects presented frequencies of 54.1% for GADAb and IA-2Ab, and 67.5% for GAD and/or IA-2 antibodies. The control group showed no positive cases. Anti-GAD and IA-2 assays showed a high frequency of positivity in these Brazilian type 1 diabetes patients, who presented the same prevalence as a Caucasian population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pancreatic ß cell function and insulin sensitivity, analyzed by the homeostasis model assessment, before and after 24 weeks of insulin therapy were studied and correlated with the presence of autoantibodies against ß cells (islet cell and anti-glutamic acid decarboxylase antibodies), in a group of 18 Brazilian lean adult non-insulin-dependent diabetes mellitus (NIDDM) patients with oral hypoglycemic agent failure (OHAF). Median fasting plasma glucose before and after insulin treatment was 19.1 and 8.5 mmol/l, respectively (P < 0.001); median HbA1c was 11.7% before vs 7.2% after insulin treatment (P < 0.001). Forty-four percent of the patients were positive (Ab+) to at least one autoantibody. Fasting C-peptide levels were lower in Ab+ than Ab- patients, both before (Ab+: 0.16 ± 0.09 vs Ab-: 0.41 ± 0.35 nmol/l, P < 0.003) and after insulin treatment (Ab+: 0.22 ± 0.13 vs Ab-: 0.44 ± 0.24 nmol/l, P < 0.03). Improvement of Hß was seen in Ab- (median before: 7.3 vs after insulin therapy: 33.4%, P = 0.003) but not in Ab+ patients (median before: 6.6 vs after insulin therapy: 20.9%). These results show that the OHAF observed in the 18 NIDDM patients studied was due mainly to two major causes: autoantibodies and ß cell desensitization. Autoantibodies against ß cells could account for 44% of OHAF, but Ab- patients may still present ß cell function recovery, mainly after a period of ß cell rest with insulin therapy. However, the effects of ß cell function recovery on the restoration of the response to oral hypoglycemic agents need to be determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Female rats are intensely affected by cocaine, with estrogen probably playing an important role in this effect. Progesterone modulates the GABA system and attenuates the effects of cocaine; however, there is no information about its relevance in changing GABA synthesis pathways after cocaine administration to female rats. Our objective was to investigate the influence of progesterone on the effects of repeated cocaine administration on the isoenzymes of glutamic acid decarboxylase (GAD65 and GAD67) mRNA in brain areas involved in the addiction circuitry. Ovariectomized, intact and progesterone replacement-treated female rats received saline or cocaine (30 mg/kg, ip) acutely or repeatedly. GAD isoenzyme mRNA levels were determined in the dorsolateral striatum (dSTR) and prefrontal cortex (PFC) by RT-PCR, showing that repeated, but not acute, cocaine decreased GADs/β-actin mRNA ratio in the dSTR irrespective of the hormonal condition (GAD65: P < 0.001; and GAD67: P = 0.004). In the PFC, repeated cocaine decreased GAD65 and increased GAD67 mRNA ratio (P < 0.05). Progesterone replacement decreased both GAD isoenzymes mRNA ratio after acute cocaine in the PFC (P < 0.001) and repeated cocaine treatment reversed this decrease (P < 0.001). These results suggest that cocaine does not immediately affect GAD mRNA expression, while repeated cocaine decreases both GAD65 and GAD67 mRNA in the dSTR of female rats, independently of their hormonal conditions. In the PFC, repeated cocaine increases the expression of GAD isoenzymes, which were decreased due to progesterone replacement.