5 resultados para S-NITROSOTHIOLS
em Scielo Saúde Pública - SP
Resumo:
OBJECTIVE: To assess the effect of endogenous estrogens on the bioavailability of nitric oxide (·NO) and in the formation of lipid peroxidation products in pre- and postmenopausal women. METHODS: NOx and S-nitrosothiols were determined by gaseous phase chemiluminescence, nitrotyrosine was determined by ELISA, COx (cholesterol oxides) by gas chromatography, and cholesteryl linoleate hydroperoxides (CE18:2-OOH), trilinolein (TG18:2-OOH), and phospholipids (PC-OOH) by HPLC in samples of plasma. RESULTS: The concentrations of NOx, nitrotyrosine, COx, CE18:2-OOH, and PC-OOH were higher in the postmenopausal period (33.8±22.3 mM; 230±130 nM; 55±19 ng/mL; 17±8.7 nM; 2775±460 nM, respectively) as compared with those in the premenopausal period (21.1±7.3 mM; 114±41 nM; 31±13 ng/mL; 6±1.4 nM; 1635±373 nM). In contrast, the concentration of S-nitrosothiols was lower in the postmenopausal period (91±55 nM) as compared with that in the premenopausal p in the premenopausal period (237±197 nM). CONCLUSION: In the postmenopausal period, an increase in nitrotyrosine and a reduction of S-nitrosothiol formation, as well as an increase of COx, CE18:2-OOH and PC-OOH formation occurs. Therefore, NO inactivation and the increase in lipid peroxidation may contribute to endothelial dysfunction and to the greater risk for atherosclerosis in postmenopausal women.
Resumo:
Considerable evidence suggests that nitroxidergic mechanisms in the nucleus tractus solitarii (NTS) participate in cardiovascular reflex control. Much of that evidence, being based on responses to nitric oxide precursors or inhibitors of nitric oxide synthesis, has been indirect and circumstantial. We sought to directly determine cardiovascular responses to nitric oxide donors microinjected into the NTS and to determine if traditional receptor mechanisms might account for responses to certain of these donors in the central nervous system. Anesthetized adult Sprague Dawley rats that were instrumented for recording arterial pressure and heart rate were used in the physiological studies. Microinjection of nitric oxide itself into the NTS did not produce any cardiovascular responses and injection of sodium nitroprusside elicited minimal depressor responses. The S-nitrosothiols, S-nitrosoglutathione (GSNO), S-nitrosoacetylpenicillamine (SNAP), and S-nitroso-D-cysteine (D-SNC) produced no significant cardiovascular responses while injection of S-nitroso-L-cysteine (L-SNC) elicited brisk, dose-dependent depressor and bradycardic responses. In contrast, injection of glyceryl trinitrate elicited minimal pressor responses without associated changes in heart rate. It is unlikely that the responses to L-SNC were dependent on release of nitric oxide in that 1) the responses were not affected by injection of oxyhemoglobin or an inhibitor of nitric oxide synthesis prior to injection of L-SNC and 2) L- and D-SNC released identical amounts of nitric oxide when exposed to brain tissue homogenates. Although GSNO did not independently affect blood pressure, its injection attenuated responses to subsequent injection of L-SNC. Furthermore, radioligand binding studies suggested that in rat brain synaptosomes there is a saturable binding site for GSNO that is displaced from that site by L-SNC. The studies suggest that S-nitrosocysteine, not nitric oxide, may be an interneuronal messenger for cardiovascular neurons in the NTS
Resumo:
Novel S-nitrosothiols possessing a phenolic function were investigated as nitric oxide (NO) donors. A study of NO release from these derivatives was carried out by electron spin resonance (ESR). All compounds gave rise to a characteristic three-line ESR signal in the presence of the complex [Fe(II)(MGD)2], revealing the formation of the complex [Fe(II)(MGD)2(NO)]. Furthermore, tests based on cytochrome c reduction were performed in order to study the ability of each phenolic disulfide, the final organic decomposition product of S-nitrosothiols, to trap superoxide radical anion (O2-). This study revealed a high reactivity of 1b and 3b towards O2-. For these two compounds, the respective inhibitory concentration (IC) 50 values were 92 µM and 43 µM.
Resumo:
The objective of the present study was to identify disturbances of nitric oxide radical (·NO) metabolism and the formation of cholesterol oxidation products in human essential hypertension. The concentrations of·NO derivatives (nitrite, nitrate, S-nitrosothiols and nitrotyrosine), water and lipid-soluble antioxidants and cholesterol oxides were measured in plasma of 11 patients with mild essential hypertension (H: 57.8 ± 9.7 years; blood pressure, 148.3 ± 24.8/90.8 ± 10.2 mmHg) and in 11 healthy subjects (N: 48.4 ± 7.0 years; blood pressure, 119.4 ± 9.4/75.0 ± 8.0 mmHg).Nitrite, nitrate and S-nitrosothiols were measured by chemiluminescence and nitrotyrosine was determined by ELISA. Antioxidants were determined by reverse-phase HPLC and cholesterol oxides by gas chromatography. Hypertensive patients had reduced endothelium-dependent vasodilation in response to reactive hyperemia (H: 9.3 and N: 15.1% increase of diameter 90 s after hyperemia), and lower levels of ascorbate (H: 29.2 ± 26.0, N: 54.2 ± 24.9 µM), urate (H: 108.5 ± 18.9, N: 156.4 ± 26.3 µM), ß-carotene (H: 1.1 ± 0.8, N: 2.5 ± 1.2 nmol/mg cholesterol), and lycopene (H: 0.4 ± 0.2, N: 0.7 ± 0.2 nmol/mg cholesterol), in plasma, compared to normotensive subjects. The content of 7-ketocholesterol, 5alpha-cholestane-3ß,5,6ß-triol and 5,6alpha-epoxy-5alpha-cholestan-3alpha-ol in LDL, and the concentration of endothelin-1 (H: 0.9 ± 0.2, N: 0.7 ± 0.1 ng/ml) in plasma were increased in hypertensive patients. No differences were found for ·NO derivatives between groups. These data suggest that an increase in cholesterol oxidation is associated with endothelium dysfunction in essential hypertension and oxidative stress, although ·NO metabolite levels in plasma are not modified in the presence of elevated cholesterol oxides.
Resumo:
The photogeneration of nitric oxide (NO) using laser flash photolysis was investigated for S-nitroso-glutathione (GSNO) and S-nitroso-N-acetylcysteine (NacySNO) at pH 6.4 (PBS/HCl) and 7.4 (PBS). Irradiation of S-nitrosothiol with light (lambda = 355 nm followed by absorption spectroscopy) resulted in the homolytic decomposition of NacySNO and GSNO to generate radicals (GS· and NacyS·) and NO. The release of NO from donor compounds measured with an ISO-Nometer apparatus was larger at pH 7.4 than pH 6.4. NacySNO was also incorporated into dipalmitoyl-phosphatidylcholine liposomes in the presence and absence of zinc phthalocyanine (ZnPC), a well-known photosensitizer useful for photodynamic therapy. Liposomes are usually used as carriers for hydrophobic compounds such as ZnPC. Inclusion of ZnPC resulted in a decrease in NO liberation in liposomal medium. However, there was a synergistic action of both photosensitizers and S-nitrosothiols resulting in the formation of other reactive species such as peroxynitrite, which is a potent oxidizing agent. These data show that NO release depends on pH and the medium, as well as on the laser energy applied to the system. Changes in the absorption spectrum were monitored as a function of light exposure.