23 resultados para Response models
em Scielo Saúde Pública - SP
Resumo:
Leishmaniasis remains a major public health problem worldwide and is classified as Category I by the TDR/WHO, mainly due to the absence of control. Many experimental models like rodents, dogs and monkeys have been developed, each with specific features, in order to characterize the immune response to Leishmania species, but none reproduces the pathology observed in human disease. Conflicting data may arise in part because different parasite strains or species are being examined, different tissue targets (mice footpad, ear, or base of tail) are being infected, and different numbers (“low” 1×102 and “high” 1×106) of metacyclic promastigotes have been inoculated. Recently, new approaches have been proposed to provide more meaningful data regarding the host response and pathogenesis that parallels human disease. The use of sand fly saliva and low numbers of parasites in experimental infections has led to mimic natural transmission and find new molecules and immune mechanisms which should be considered when designing vaccines and control strategies. Moreover, the use of wild rodents as experimental models has been proposed as a good alternative for studying the host-pathogen relationships and for testing candidate vaccines. To date, using natural reservoirs to study Leishmania infection has been challenging because immunologic reagents for use in wild rodents are lacking. This review discusses the principal immunological findings against Leishmania infection in different animal models highlighting the importance of using experimental conditions similar to natural transmission and reservoir species as experimental models to study the immunopathology of the disease.
Resumo:
In this study, we concentrate on modelling gross primary productivity using two simple approaches to simulate canopy photosynthesis: "big leaf" and "sun/shade" models. Two approaches for calibration are used: scaling up of canopy photosynthetic parameters from the leaf to the canopy level and fitting canopy biochemistry to eddy covariance fluxes. Validation of the models is achieved by using eddy covariance data from the LBA site C14. Comparing the performance of both models we conclude that numerically (in terms of goodness of fit) and qualitatively, (in terms of residual response to different environmental variables) sun/shade does a better job. Compared to the sun/shade model, the big leaf model shows a lower goodness of fit and fails to respond to variations in the diffuse fraction, also having skewed responses to temperature and VPD. The separate treatment of sun and shade leaves in combination with the separation of the incoming light into direct beam and diffuse make sun/shade a strong modelling tool that catches more of the observed variability in canopy fluxes as measured by eddy covariance. In conclusion, the sun/shade approach is a relatively simple and effective tool for modelling photosynthetic carbon uptake that could be easily included in many terrestrial carbon models.
Resumo:
Previous work in our laboratory, mainly foccused the prospects of achieving resistance against Schistosoma mansoni infection with adult worm-derived antigens in the form of a soluble extract (SE). This extract obtained by incubation of living adult schistosomes in saline, contains a large number of distinct molecules and was actually shown to be a significantly protective in different outbred animals models such as Swiss mice and rabbits. It thus appeared worthwile to investigate the potencial protective activity of SE in different inbred strains of mice, known to be highly susceptible to the infection. Herein we present data showing that DBA/2 mice, once immunized with SE acquire significant levels of resistance to a S. mansoni cercarial challenge. In addition, preliminary studies on the immune system of immunized animals reveled that, injection of SE caused no general inbalance of B or T cell responses.
Resumo:
Chimpanzees are being used in the study of immune response to Plasmodium falciparum malaria pre-erythrocytic stages (MPES). Responses induced by immunisation with recombinant/synthetic antigens and by irradiated sporozoites are being evaluated in a model system that is phylogenetically close to humans and that is amenable to limited manipulation not possible in humans. The value of chimpanzees for the in-depth study of immunological mechanisms at work in MPES-induced protection are discussed. A total number of 7 chimpanzees have been used to evaluate the immune response to recombinant antigens, and 5 have been challenged with large numbers of sporozoites, followed by surgical liver-wedge resection, in order to generate infected liver tissue for histological and immunological studies. As a complementary model, SCID mice carrying live, transplanted human and primate hepatocytes have been inoculated with sporozoites and infection of transplanted cells has been monitored by histological and immunological methods. In ongoing experiments chimpanzees are being immunised with MPES-derived lipopeptides that have been shown to overcome MHC restriction in mice, and with irradiated sporozoites.
Resumo:
The control and regrowth after nicosulfuron reduced rate treatment of Johnsongrass (Sorghum halepense L. Pers.) populations, from seven Argentinean locations, were evaluated in pot experiments to assess if differential performance could limit the design and implementation of integrated weed management programs. Populations from humid regions registered a higher sensibility to reduced rates of nicosulfuron than populations from subhumid regions. This effect was visualised in the values of regression coefficient of the non-linear models (relating fresh weight to nicosulfuron rate), and in the time needed to obtain a 50% reduction of photosynthesis rate and stomatal conductance. The least leaf CO2 exchange of subhumid populations could result in a lower foliar absorption and translocation of nicosulfuron, thus producing less control and increasing their ability to sprout and produce new aerial biomass. The three populations from subhumid regions, with less sensibility to nicosulfuron rates, presented substantial difference in fresh weight, total rhizome length and number of rhizome nodes, when they were evaluated 20 week after treatment. In consequence, a substantial Johnsongrass re-infestation could occur, if rates below one-half of nicosulfuron labeled rate were used to control Johnsongrass in subhumid regions.
Resumo:
The objective of this work was to evaluate a generalized response function to the atmospheric CO2 concentration [f(CO2)] by the radiation use efficiency (RUE) in rice. Experimental data on RUE at different CO2 concentrations were collected from rice trials performed in several locations around the world. RUE data were then normalized, so that all RUE at current CO2 concentration were equal to 1. The response function was obtained by fitting normalized RUE versus CO2 concentration to a Morgan-Mercer-Flodin (MMF) function, and by using Marquardt's method to estimate the model coefficients. Goodness of fit was measured by the standard deviation of the estimated coefficients, the coefficient of determination (R²), and the root mean square error (RMSE). The f(CO2) describes a nonlinear sigmoidal response of RUE in rice, in function of the atmospheric CO2 concentration, which has an ecophysiological background, and, therefore, renders a robust function that can be easily coupled to rice simulation models, besides covering the range of CO2 emissions for the next generation of climate scenarios for the 21st century.
Resumo:
Non-linear functional representation of the aerodynamic response provides a convenient mathematical model for motion-induced unsteady transonic aerodynamic loads response, that accounts for both complex non-linearities and time-history effects. A recent development, based on functional approximation theory, has established a novel functional form; namely, the multi-layer functional. For a large class of non-linear dynamic systems, such multi-layer functional representations can be realised via finite impulse response (FIR) neural networks. Identification of an appropriate FIR neural network model is facilitated by means of a supervised training process in which a limited sample of system input-output data sets is presented to the temporal neural network. The present work describes a procedure for the systematic identification of parameterised neural network models of motion-induced unsteady transonic aerodynamic loads response. The training process is based on a conventional genetic algorithm to optimise the network architecture, combined with a simplified random search algorithm to update weight and bias values. Application of the scheme to representative transonic aerodynamic loads response data for a bidimensional airfoil executing finite-amplitude motion in transonic flow is used to demonstrate the feasibility of the approach. The approach is shown to furnish a satisfactory generalisation property to different motion histories over a range of Mach numbers in the transonic regime.
Resumo:
Greenhouse studies were conducted in 2008-2009 with the objective of adjusting dose-response curves of the main soil-applied herbicides currently used in cotton for the control of Amaranthus viridis, A. hybridus, A. spinosus, A. lividus, as well as comparing susceptibility among different species, using the identity test models. Thirty six individual experiments were simultaneously carried out in greenhouse, in a sandy clay loam soil (21% clay, 2.36% OM) combining increasing doses of the herbicides alachlor, clomazone, diuron, oxyfluorfen, pendimethalin, prometryn, S-metolachlor, and trifluralin applied to each species. Dose-response curves were adjusted for visual weed control at 28 days after herbicide application and doses required for 80% (C80) and 95% (C95) control were calculated. All herbicides, except clomazone and trifluralin, provided efficient control of most Amaranthus species, but substantial differences in susceptibility to herbicides were found. In general, A. lividus was the least sensitive species, whereas A. spinosus demonstrated the highest sensitivity to herbicides. Alachlor, diuron, oxyfluorfen, pendimethalin, S-metolachlor, and prometryn are efficient alternatives to control Amaranthus spp. in a range of doses that are currently lower than those recommended to cotton.
Resumo:
Two animal models of pain were used to study the effects of short-term protein malnutrition and environmental stimulation on the response threshold to aversive stimuli. Eighty male Wistar rats were used. Half of the pups were submitted to malnutrition by feeding their mothers a 6% protein diet from 0 to 21 days of age while the mothers of the other half (controls) were well nourished, receiving 16% protein. From 22 to 70 days all rats were fed commercial lab chow. Half of the animals in the malnourished and control groups were maintained under stimulating conditions, including a 3-min daily handling from 0 to 70 days and an enriched living cage after weaning. The other half was reared in a standard living cage. At 70 days, independent groups of rats were exposed to the shock threshold or to the tail-flick test. The results showed lower body and brain weights in malnourished rats when compared with controls at weaning and testing. In the shock threshold test the malnourished animals were more sensitive to electric shock and environmental stimulation increased the shock threshold. No differences due to diet or environmental stimulation were found in the tail-flick procedure. These results demonstrate that protein malnutrition imposed only during the lactation period is efficient in inducing hyperreactivity to electric shock and that environmental stimulation attenuates the differences in shock threshold produced by protein malnutrition
Resumo:
The analgesic efficacy of cholinergic agonists and anticholinesterase agents has been widely recognized. The analgesic effect obtained by activating cholinergic mechanisms, however, seems to depend on the experimental pain model utilized for its evaluation. The antinociceptive effect of intraspinal neostigmine was examined in rats submitted concurrently to the tail flick and formalin tests. Neostigmine (8.25 and 16.5 nmol) produced a dose-dependent antinociceptive effect in the tail flick test (a model of phasic pain) and reduced the first phase (phasic pain) of the animal response to formalin also in a dose-dependent manner. The second phase (tonic pain) of the response to formalin, however, was slightly reduced after a longer period of time only by the higher dose of the anticholinesterase. The effect of neostigmine was not significantly different when the drug was injected into rats submitted exclusively to the tail flick test. The second phase of the animal response to formalin was slightly reduced by neostigmine (8.25 nmol) and strongly inhibited by the higher dose of the anticholinesterase when injection was made after the first phase. We conclude that phasic and tonic pain can both be controlled by high doses of neostigmine. In addition, we show that inhibition by a lower dose of neostigmine of the formalin-induced phasic pain did not prevent the subsequent occurrence of tonic pain produced by the irritant
Resumo:
This article is a transcription of an electronic symposium sponsored by the Brazilian Society of Neuroscience and Behavior (SBNeC). Invited researchers from the European Union, North America and Brazil discussed two issues on anxiety, namely whether panic is a very intense anxiety or something else, and what aspects of clinical anxiety are reproduced by animal models. Concerning the first issue, most participants agreed that generalized anxiety and panic disorder are different on the basis of clinical manifestations, drug response and animal models. Also, underlying brain structures, neurotransmitter modulation and hormonal changes seem to involve important differences. It is also common knowledge that existing animal models generate different types of fear/anxiety. A challenge for future research is to establish a good correlation between animal models and nosological classification.
Resumo:
A close relationship exists between calcium concentration in the central nervous system and nociceptive processing. Aminoglycoside antibiotics and magnesium interact with N- and P/Q-type voltage-operated calcium channels. In the present study we compare the antinociceptive potency of intrathecal administration of aminoglycoside antibiotics and magnesium chloride in the tail-flick test and on incisional pain in rats, taken as models of phasic and persistent post-surgical pain, respectively. The order of potency in the tail-flick test was gentamicin (ED50 = 3.34 µg; confidence limits 2.65 and 4.2) > streptomycin (5.68 µg; 3.76 and 8.57) = neomycin (9.22 µg; 6.98 and 12.17) > magnesium (19.49 µg; 11.46 and 33.13). The order of potency to reduce incisional pain was gentamicin (ED50 = 2.06 µg; confidence limits 1.46 and 2.9) > streptomycin (47.86 µg; 26.3 and 87.1) = neomycin (83.17 µg; 51.6 and 133.9). The dose-response curves for each test did not deviate significantly from parallelism. We conclude that neomycin and streptomycin are more potent against phasic pain than against persistent pain, whereas gentamicin is equipotent against both types of pain. Magnesium was less potent than the antibiotics and effective in the tail-flick test only.
Resumo:
Immunoglobulin E (IgE) and mast cells are believed to play important roles in allergic inflammation. However, their contributions to the pathogenesis of human asthma have not been clearly established. Significant progress has been made recently in our understanding of airway inflammation and airway hyperresponsiveness through studies of murine models of asthma and genetically engineered mice. Some of the studies have provided significant insights into the role of IgE and mast cells in the allergic airway response. In these models mice are immunized systemically with soluble protein antigens and then receive an antigen challenge through the airways. Bronchoalveolar lavage fluid from mice with allergic airway inflammation contains significant amounts of IgE. The IgE can capture the antigen presented to the airways and the immune complexes so formed can augment allergic airway response in a high-affinity IgE receptor (FcepsilonRI)-dependent manner. Previously, there were conflicting reports regarding the role of mast cells in murine models of asthma, based on studies of mast cell-deficient mice. More recent studies have suggested that the extent to which mast cells contribute to murine models of asthma depends on the experimental conditions employed to generate the airway response. This conclusion was further supported by studies using FcepsilonRI-deficient mice. Therefore, IgE-dependent activation of mast cells plays an important role in the development of allergic airway inflammation and airway hyperresponsiveness in mice under specific conditions. The murine models used should be of value for testing inhibitors of IgE or mast cells for the development of therapeutic agents for human asthma.
Resumo:
The objective of the present study was to characterize the heart rate (HR) patterns of healthy males using the autoregressive integrated moving average (ARIMA) model over a power range assumed to correspond to the anaerobic threshold (AT) during discontinuous dynamic exercise tests (DDET). Nine young (22.3 ± 1.57 years) and 9 middle-aged (MA) volunteers (43.2 ± 3.53 years) performed three DDET on a cycle ergometer. Protocol I: DDET in steps with progressive power increases of 10 W; protocol II: DDET using the same power values as protocol 1, but applied randomly; protocol III: continuous dynamic exercise protocol with ventilatory and metabolic measurements (10 W/min ramp power), for the measurement of ventilatory AT. HR was recorded and stored beat-to-beat during DDET, and analyzed using the ARIMA (protocols I and II). The DDET experiments showed that the median physical exercise workloads at which AT occurred were similar for protocols I and II, i.e., AT occurred between 75 W (116 bpm) and 85 W (116 bpm) for the young group and between 60 W (96 bpm) and 75 W (107 bpm) for group MA in protocols I and II, respectively; in two MA volunteers the ventilatory AT occurred at 90 W (108 bpm) and 95 W (111 bpm). This corresponded to the same power values of the positive trend in HR responses. The change in HR response using ARIMA models at submaximal dynamic exercise powers proved to be a promising approach for detecting AT in normal volunteers.
Resumo:
The metabolic effects of carbohydrate supplementation in mice have not been extensively studied. In rats, glucose- and fructose-rich diets induce hypertriacylglycerolemia. In the present study, we compared the metabolic responses to two monosaccharide supplementations in two murine models. Adult male Wistar rats (N = 80) and C57BL/6 mice (N = 60), after 3 weeks on a standardized diet, were submitted to dietary supplementation by gavage with glucose (G) or fructose (F) solutions (500 g/L), 8 g/kg body weight for 21 days. Glycemia was significantly higher in rats after fructose treatment (F: 7.9 vs 9.3 mM) and in mice (G: 6.5 vs 10 and F: 6.6 vs 8.9 mM) after both carbohydrate treatments. Triacylglycerolemia increased significantly 1.5 times in rats after G or F supplementation. Total cholesterol did not change with G treatment in rats, but did decrease after F supplementation (1.5 vs 1.4 mM, P < 0.05). Both supplementations in rats induced insulin resistance, as suggested by the higher Homeostasis Model Assessment Index. In contrast, mice showed significant decreases in triacylglycerol (G: 1.8 vs 1.4 and F: 1.9 vs 1.4 mM, P < 0.01) and total cholesterol levels (G and F: 2.7 vs 2.5 mM, P < 0.05) after both monosaccharide supplementations. Wistar rats and C57BL/6 mice, although belonging to the same family (Muridae), presented opposite responses to glucose and fructose supplementation regarding serum triacylglycerol, free fatty acids, and insulin levels after monosaccharide treatment. Thus, while Wistar rats developed features of plurimetabolic syndrome, C57BL/6 mice presented changes in serum biochemical profile considered to be healthier for the cardiovascular system.