18 resultados para Residential Mobility
em Scielo Saúde Pública - SP
Resumo:
OBJECTIVE: Analyse how basic sanitation conditions, water supply and housing conditions affect the concentration of Culex quinquefasciatus METHODS: Populations of C. quinquefasciatus in 61 houses in the municipality of Olinda, PE, were monitored between October 2009 and October 2010. Observations were carried out in homes without the presence of preferred breeding sites in order to identify characteristics that may be aggravating factors for the development of the mosquito. Five aggravating factors were analysed: vegetation cover surrounding the home, number of residents/home, water storage, sewage drainage and water drainage. These characteristics were analysed in terms of presence or absence and as indicators of the degree of infestation, which was estimated through monitoring the concentration of eggs (oviposition traps - BR-OVT) and adults (CDC light traps). RESULTS: Sewage drainage to a rudimentary septic tank or to the open air was the most frequent aggravating factor in the homes (91.8%), although the presence of vegetation was the only characteristic that significantly influenced the increase in the number of egg rafts (p = 0.02). The BR-OVT achieved positive results in 95.1% of the evaluations, with the presence of at least one egg raft per month. A total of 2,366 adults were caught, with a mosquito/room/night ratio of 32.9. No significant difference was found in the number of mosquitoes caught in the homes. CONCLUSIONS: Although the sanitation and water supply influence the population density of C. quinquefasciatus, residence features that are not usually considered in control measures can be aggravating factors in sustaining the mosquito population.
Resumo:
Third stage larvae (L3) from Angiostrongylus costaricensis were incubated in water at room temperature and at 5 ° C and their mobility was assessed daily for 17 days. Viability was associated with the mobility and position of the L3, and it was confirmed by inoculation per os in albino mice. The number of actively moving L3 sharply decreased within 3 to 4 days, but there were some infective L3 at end of observation. A mathematical model estimated 80 days as the time required to reduce the probability of infective larvae to zero. This data does not support the proposition of refrigerating vegetables and raw food as an isolated procedure for prophylaxis of human abdominal angiostrongylosis infection.
Resumo:
SUMMARYCryptococcosis is a severe systemic mycosis caused by two species of Cryptococcus that affect humans and animals: C. neoformans and C. gattii. Cosmopolitan and emergent, the mycosis results from the interaction between a susceptible host and the environment. The occurrence of C. neoformanswas evaluated in 122 samples of dried pigeon excreta collected in 49 locations in the City of Cuiabá, State of Mato Grosso, Brazil, including public squares (n = 5), churches (n = 4), educational institutions (n = 3), health units (n = 8), open areas covered with asbestos (n = 4), residences (n = 23), factory (n = 1) and a prison (n = 1). Samples collected from July to December of 2010 were seeded on Niger seed agar (NSA). Dark brown colonies were identified by urease test, carbon source assimilation tests and canavanine-glycine-bromothymol blue medium. Polymerase chain reaction primer pairs specific for C. neoformans were also used for identification. Cryptococcus neoformans associated to pigeon excreta was isolated from eight (6.6%) samples corresponding to six (12.2%) locations.Cryptococcus neoformans was isolated from urban areas, predominantly in residences, constituting a risk of acquiring the disease by immunocompromised and immunocompetent individuals.
Resumo:
Heteroduplex mobility assay, single-stranded conformation polymorphism and nucleotide sequencing were utilised to genotype human parvovirus B19 samples from Brazil and Paraguay. Ninety-seven serum samples were collected from individuals presenting with abortion or erythema infectiosum, arthropathies, severe anaemia and transient aplastic crisis; two additional skin samples were collected by biopsy. After the procedure, all clinical samples were classified as genotype 1.
Resumo:
The identification of mycobacteria is essential because tuberculosis (TB) and mycobacteriosis are clinically indistinguishable and require different therapeutic regimens. The traditional phenotypic method is time consuming and may last up to 60 days. Indeed, rapid, affordable, specific and easy-to-perform identification methods are needed. We have previously described a polymerase chain reaction-based method called a mycobacteria mobility shift assay (MMSA) that was designed for Mycobacterium tuberculosis complex (MTC) and nontuberculous mycobacteria (NTM) species identification. The aim of this study was to assess the MMSA for the identification of MTC and NTM clinical isolates and to compare its performance with that of the PRA-hsp65 method. A total of 204 clinical isolates (102 NTM and 102 MTC) were identified by the MMSA and PRA-hsp65. For isolates for which these methods gave discordant results, definitive species identification was obtained by sequencing fragments of the 16S rRNA and hsp65 genes. Both methods correctly identified all MTC isolates. Among the NTM isolates, the MMSA alone assigned 94 (92.2%) to a complex or species, whereas the PRA-hsp65 method assigned 100% to a species. A 91.5% agreement was observed for the 94 NTM isolates identified by both methods. The MMSA provided correct identification for 96.8% of the NTM isolates compared with 94.7% for PRA-hsp65. The MMSA is a suitable auxiliary method for routine use for the rapid identification of mycobacteria.
Resumo:
The deficiency or excess of micronutrients has been determined by analyses of soil and plant tissue. In Brazil, the lack of studies that would define and standardize extraction and determination methods, as well as lack of correlation and calibration studies, makes it difficult to establish limits of concentration classes for analysis interpretation and fertilizer recommendations for crops. A specific extractor for soil analysis is sometimes chosen due to the ease of use in the laboratory and not in view of its efficiency in determining a bioavailable nutrient. The objectives of this study were to: (a) evaluate B concentrations in the soil as related to the fertilizer rate, soil depth and extractor; (b) verify the nutrient movement in the soil profile; (c) evaluate efficiency of Hot Water, Mehlich-1 and Mehlich-3 as available B extractors, using sunflower as test plant. The experimental design consisted of complete randomized blocks with four replications and treatments of five B rates (0, 2, 4, 6, and 8 kg ha-1) applied to the soil surface and evaluated at six depths (0-0.05, 0.05-0.10, 0.10-0.15, 0.15-0.20, 0.20-0.30, and 0.30-0.40 m). Boron concentrations in the soil extracted by Hot Water, Mehlich-1 and Mehlich-3 extractors increased linearly in relation to B rates at all depths evaluated, indicating B mobility in the profile. The extractors had different B extraction capacities, but were all efficient to evaluate bioavailability of the nutrient to sunflower. Mehlich-1 and Mehlich-3 can therefore be used to analyze B as well as Hot Water.
Resumo:
Boron deficiency causes large productivity losses in eucalypt stands in extensive areas of the Brazilian Cerrado region, thus understanding B mobility is a key step in selecting genetic materials that will better withstand B limitation. Thus, in this study B mobility was evaluated in two eucalypt clones (68 and 129), under B sufficiency or B deficiency, after foliar application of the 10B isotope tracer to a single mature leaf. Samples of young tissue, mature leaves and roots were collected 0, 1, 5, 12 and 17 days after 10B application. The 10B:11B isotope ratio was determined by HR-ICP-MS. Samples of leaves and xylem sap were collected for the determination of soluble sugars and polyalcohols by ion chromatography. Boron was translocated within eucalypt. Translocation of foliar-applied 10B to the young tissues, mature leaves and roots was higher in clone 129 than in 68. Seventeen days after 10B application to a single mature leaf, between 14 and 18 % of B in the young tissue was originated from foliar B application. In plants with adequate B supply the element was not translocated out of the labeled leaf.
Resumo:
Understanding the magnitude of B mobility in eucalyptus may help to select clones that are more efficient for B use and to design new practices of B fertilization. This study consisted of five experiments with three eucalyptus clones (129, 57 and 58) where the response to and mobility of B were evaluated. Results indicated that clone 129 was less sensitive to B deficiency than clones 68 and 57, apparently due to its ability to translocate B previously absorbed via root systems to younger tissues when B in solution became limiting. Translocation also occurred when B was applied as boric acid only once to a single mature leaf, resulting in higher B concentration in roots, stems and younger leaves. The growth of B-deficient plants was also recovere by a single foliar application of B to a mature leaf. This mobility was greater, when foliar-applied B was supplied in complexed (boric acid + manitol) than in non-complexed form (boric acid alone). When the root system of clone 129 was split in two solution compartments, B supplied to one root compartment was translocated to the shoot and back to the roots in the other compartment, improving the B status and growth. Thus, it appears that B is relatively mobile in eucalyptus, especially in clone 129, and its higher mobility could be due to the presence of an organic compound such as manitol, able to complex B.
Resumo:
The eutrophication of aquifers is strongly linked to the mobility of P in soils. Although P mobility was considered irrelevant in a more distant past, more recent studies have shown that P, both in organic (Po) and inorganic forms (Pi), can be lost by leaching and eluviation through the soil profile, particularly in less weathered and/or sandier soils with low P adsorption capacity. The purpose of this study was to determine losses of P forms by leaching and eluviation from soil columns. Each column consisted of five PVC rings (diameter 5 cm, height 10 cm), filled with two soil types: a clayey Red-Yellow Latosol and a sandy loam Red-Yellow Latosol, which were exposed to water percolation. The soils were previously treated with four P rates (as KH2PO4 ) to reach 0, 12.5, 25.0 and 50 % of the maximum P adsorption capacity (MPAC). The P source was homogenized with the whole soil volume and incubated for 60 days. After this period the soils were placed in the columns; the soil of the top ring was mixed with five poultry litter rates of 0, 20, 40, 80, and 160 t ha-1 (dry weight basis). Treatments consisted of a 4 x 5 x 2 factorial scheme corresponding to four MPAC levels, five poultry litter rates, two soils, with three replications, arranged in a completely randomized block design. Deionized water was percolated through the columns 10 times in 35 days to simulate about 1,200 mm rainfall. In the leachate of each column the inorganic P (reactive P, Pi) and organic P forms (unreactive P, Po) were determined. At the end of the experiment, the columns were disassembled and P was extracted with the extractants Mehlich-1 (HCl 0.05 mol L-1 and H2SO4 0.0125 mol L-1) and Olsen (NaHCO3 0.5 mol L-1; pH 8.5) from the soil of each ring. The Pi and Po fractions were measured by the Olsen extractant. It was found that under higher poultry litter rates the losses of unreactive P (Po) were 6.4 times higher than of reactive P (Pi). Both the previous P fertilization and increasing poultry litter rates caused a vertical movement of P down the soil columns, as verified by P concentrations extracted by Mehlich-1 and NaHCO3 (Olsen). The environmental critical level (ECL), i.e., the P soil concentration above which P leaching increases exponentially, was 100 and 150 mg dm-3 by Mehlich-1 and 40 and 60 mg dm-3 by Olsen, for the sandy loam and clay soils, respectively. In highly weathered soils, where residual P is accumulated by successive crops, P leaching through the profile can be significant, particularly when poultry litter is applied as fertilizer.
Resumo:
Pig slurry applied to soil at different rates may affect soil properties and the mobility of chemical compounds within the soil. The purpose of this study was to evaluate the effects of rates of pig slurry application in agricultural areas on soil physical and chemical properties and on the mobility of glyphosate through the soil profile. The study was carried out in the 12th year of an experiment with pig slurry applied at rates of 0 (control), 50, 100 and 200 m³ ha-1 yr-1 on a Latossolo Vermelho distrófico (Hapludox) soil. In the control, the quantities of P and K removed by harvested grains were replaced in the next crop cycle. Soil physical properties (bulk density, porosity, texture, and saturated hydraulic conductivity) and chemical properties (organic matter, pH, extractable P, and exchangeable K) were measured. Soil solution samples were collected at depths of 20, 40 and 80 cm using suction lysimeters, and glyphosate concentrations were measured over a 60-day period after slurry application. Soil physical and chemical properties were little affected by the pig slurry applications, but soil pH was reduced and P levels increased in the surface layers. In turn, K levels were increased in sub-surface layers. Glyphosate concentrations tended to decrease over time but were not affected by pig slurry application. The concentrations of glyphosate found in different depths show that the pratice of this application in agricultural soils has the potential for contamination of groundwater, especially when the water table is the surface and heavy rains occur immediately after application.
Resumo:
In this work we propose a new approach for the determination of the mobility of mercury in sediments based on spatial distribution of concentrations. We chose the Tainheiros Cove, located in the Todos os Santos Bay, Brazil, as the study area, for it has a history of mercury contamination due to a chloro-alkali plant that was active during 12 years. Twenty-six surface sediment samples were collected from the area and mercury concentrations were measured by cold vapour atomic absorption spectrophotometry. A contour map was constructed from the results, indicating that mercury accumulated in a "hot spot" where concentrations reach more than 1 µg g-1. The model is able to estimate mobility of mercury in the sediments based on the distances between iso-concentration contours that determines an attenuation of concentrations factor. Values of attenuation ranged between 0.0729 (East of the hot spot, indicating higher mobility) to 0.7727 (North of the hot spot, indicating lower mobility).
Resumo:
This work presents an application of the Mobility Approach to the analysis of the power flow through grillage-like structures. Such structures are usually found in offshore platforms, supporting large and heavy machines. Different wave kinds (longitudinal, flexural and torsional) were initially considered in the power flow analysis between two beams joined in L. Beams excited by an in-plane point force showed strong coupling between longitudinal-flexural waves, while that for out-of-plane point force excitation, flexural-torsional waves coupling represents the most important mechanism of energy transmission. The response determination of grillages by the mobility approach requires the structure to be separated into simple beam-like structural components. Equations for rotations and displacements at the joints of all beams are written for as mobility functions, and moments and forces acting at the joints. A system of equations relating all such internal forces and moments is obtained. This approach was applied to simple grillages. Response results showed good agreement when compared to those provided by Finite Elements.
Resumo:
Chromatin proteins play a role in the organization and functions of DNA. Covalent modifications of nuclear proteins modulate their interactions with DNA sequences and are probably one of the multiple factors involved in the process of switch on/off transcriptionally active regions of DNA. Histones and high mobility group proteins (HMG) are subject to many covalent modifications that may modulate their capacity to bind to DNA. We investigated the changes induced in the phosphorylation pattern of cultured Wistar rat Sertoli cell histones and high mobility group protein subfamilies exposed to 7 µM retinol for up to 48 h. In each experiment, 6 h before the end of the retinol treatment each culture flask received 370 KBq/ml [32P]-phosphate. The histone and HMGs were isolated as previously described [Moreira et al. Medical Science Research (1994) 22: 783-784]. The total protein obtained by either method was quantified and electrophoresed as described by Spiker [Analytical Biochemistry (1980) 108: 263-265]. The gels were stained with Coomassie brilliant blue R-250 and the stained bands were cut and dissolved in 0.5 ml 30% H2O2 at 60oC for 12 h. The vials were chilled and 5.0 ml scintillation liquid was added. The radioactivity in each vial was determined with a liquid scintillation counter. Retinol treatment significantly changed the pattern of each subfamily of histone and high mobility group proteins.
Resumo:
Falls are a major concern in the elderly population with chronic joint disease. To compare muscular function and functional mobility among older women with knee osteoarthritis with and without a history of falls, 15 elderly women with a history of falls (74.20 ± 4.46 years) and 15 without a history of falls (71.73 ± 4.73 years) were studied. Muscular function, at the angular speed of 60, 120, and 180º/s, was evaluated using the Biodex Isokinetic Dynamometer. The sit-to-stand task was performed using the Balance Master System and the Timed Up and Go test was used to determine functional mobility. After collection of these data, the history of falls was investigated. A statistically significant difference was detected in the time taken to transfer the center of gravity during the sit-to-stand test (means ± SD; non-fallers: 0.35 ± 0.16 s; fallers: 0.55 ± 0.32 s; P = 0.049, Student t-test) and in the Timed Up and Go test (medians; non-fallers: 10.08 s; fallers: 11.59 s; P = 0.038, Mann-Whitney U-test). The results indicated that elderly osteoarthritic women with a history of falls presented altered functional mobility and needed more time to transfer the center of gravity in the sit-to-stand test. It is important to implement strategies to guarantee a better functional performance of elderly patients to reduce fall risks.
Resumo:
High mobility group box 1 (HMGB1) was discovered as a novel late-acting cytokine that contributes to acute lung injury (ALI). However, the contribution of HMGB1 to two-hit-induced ALI has not been investigated. To examine the participation of HMGB1 in the pathogenesis of ALI caused by the two-hit hypothesis, endotoxin was injected intratracheally in a hemorrhagic shock-primed ALI mouse model. Concentrations of HMGB1 in the lung of the shock group were markedly increased at 16 h (1.63 ± 0.05, compared to the control group: 1.02 ± 0.03; P < 0.05), with the highest concentration being observed at 24 h. In the sham/lipopolysaccharide group, lung HMGB1 concentrations were found to be markedly increased at 24 h (1.98 ± 0.08, compared to the control group: 1.07 ± 0.03; P < 0.05). Administration of lipopolysaccharide to the hemorrhagic shock group resulted in a notable HMGB1 increase by 4 h, with a further increase by 16 h. Intratracheal lipopolysaccharide injection after hemorrhagic shock resulted in the highest lung leak at 16 h (2.68 ± 0.08, compared to the control group: 1.05 ± 0.04; P < 0.05). Compared to the hemorrhagic shock/lipopolysaccharide mice, blockade of HMGB1 at the same time as lipopolysaccharide injection prevented significantly pulmonary tumor necrosis factor-alpha, interleukin-1beta and myeloperoxidase. Lung leak was also markedly reduced at 16 h; blockade of HMGB1 24 h after lipopolysaccharide injection failed to alter lung leak or myeloperoxidase at 48 h. Our observations suggest that HMGB1 plays a key role as a late mediator when lipopolysaccharide is injected after hemorrhagic shock-primed ALI and the kinetics of its release differs from that of one-hit ALI. The therapeutic window to suppress HMGB1 activity should not be delayed to 24 h after the disease onset.