158 resultados para Repetitive-element-based PCR assays
em Scielo Saúde Pública - SP
Resumo:
In Brazil, domestic dogs are branded as the primary reservoir for zoonotic visceral leishmaniasis, due to the clear positive correlation observed between human and canine infection rates. This study aimed to carry out a serological survey of canine visceral leishmaniasis (CVL) in dogs housed at a public kennel in the municipality of Juiz de Fora, Minas Gerais State, Brazil, using the immunochromatographic TR DPP® CVL rapid test. Additionally, conventional and/or real time PCR assay was used to detect and confirm L. infantum infection in the DPP positive dogs only. Of the 400 dogs studied, most did not present clinical signs for CVL (p < 0.05), and fifteen (3.8%) were seropositive in the DPP test. There was no statistically significant difference between the DPP seropositive dogs and the clinical signs of the disease (p > 0.05). Both conventional and real time PCR tests confirmed L. infantum infection in nine (75.0%) of the twelve DPP seropositive dogs that remained alive during the follow-up period. This study is the first seroepidemiologic survey of CVL held in the city of Juiz de Fora, and the results reinforce the idea that this disease is currently in a process of expansion and urbanization in Brazil. Furthermore, this study highlights the use of the DPP test as an alternative for diagnosing CVL in large and mid-sized cities, due to its ease of implementation.
Resumo:
Coxiella burnetii is the agent of Q fever , an emergent worldwide zoonosis of wide clinical spectrum. Although C. burnetii infection is typically associated with acute infection, atypical pneumonia and flu-like symptoms, endocarditis, osteoarticular manifestations and severe disease are possible, especially when the patient has a suppressed immune system; however, these severe complications are typically neglected. This study reports the sequencing of the repetitive element IS1111 of the transposase gene of C. burnetii from blood and bronchoalveolar lavage (BAL) samples from a patient with severe pneumonia following methotrexate therapy, resulting in the molecular diagnosis of Q fever in a patient who had been diagnosed with active seronegative polyarthritis two years earlier. To the best of our knowledge, this represents the first documented case of the isolation of C. burnetii DNA from a BAL sample.
Resumo:
Simple double repetitive element polymerase chain reaction (MaDRE-PCR) and Pvu II-IS1245 restriction fragment length polymorphism (RFLP) typing methods were used to type 41 Mycobacterium avium isolates obtained from 14 Aids inpatients and 10 environment and animals specimens identified among 53 mycobacteria isolated from 237 food, chicken, and pig. All environmental and animals strains showed orphan patterns by both methods. By MaDRE-PCR four patients, with multiple isolates, showed different patterns, suggesting polyclonal infection that was confirmed by RFLP in two of them. This first evaluation of MaDRE-PCR on Brazilian M. avium strains demonstrated that the method seems to be useful as simple and less expensive typing method for screening genetic diversity in M. avium strains on selected epidemiological studies, although with limitation on analysis identical patterns except for one band.
Resumo:
Introduction During a diagnostic evaluation of canine visceral leishmaniasis (VL), two of seventeen dogs were found to be co-infected by Leishmania (Viannia) braziliensis and Leishmania (Leishmania) chagasi. Methods Specific polymerase chain reaction (PCR) and restriction fragment length polymorphism-PCR (RFLP-PCR) assays were performed. Results PCR assays for Leishmania subgenus identification followed by RFLP-PCR analysis in biopsies from cutaneous lesions and the spleen confirmed the presence of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) chagasi in those fragments. Conclusions This report reinforces the importance of using serological and molecular techniques in the epidemiological surveillance of canine populations in endemic areas in which both diseases are known to co-exist. In such cases, a reassessment of the control measures is required.
Resumo:
Bacterial canker of grapevine (Vitis vinifera), caused by Xanthomonas campestris pv. viticola was first detected in Brazil in 1998, affecting grapevines in the São Francisco river basin, state of Pernambuco. The disease was also reported in Juazeiro, Bahia and later in Piauí and Ceará. Due to its limited geographical distribution and relatively recent detection in Brazil, very little is known about the pathogen's biology and diversity. Repetitive DNA based-PCR (rep-PCR) profiles were generated from purified bacterial DNA of 40 field strains of X. campestris pv. viticola, collected between 1998 and 2001 in the states of Pernambuco, Bahia and Piauí. Combined analysis of the PCR patterns obtained with primers REP, ERIC and BOX, showed a high degree of similarity among Brazilian strains and the Indian type strain NCPPB 2475. Similar genomic patterns with several diagnostic bands, present in all strains, could be detected. Fingerprints were distinct from those of strains representing other pathovars and from a yellow non-pathogenic isolate from grape leaves. The polymorphism observed among the Brazilian strains allowed their separation into five subgroups, although with no correlation with cultivar of origin, geographic location or year collected.
Resumo:
An investigation was carried out into the genetic mechanisms responsible for multidrug resistance in nine carbapenem-resistant Pseudomonas aeruginosaisolates from different hospitals in Recife, Brazil. Susceptibility to antimicrobial agents was determined by broth microdilution. Polymerase chain reaction (PCR) was employed to detect the presence of genes encoding β-lactamases, aminoglycoside-modifying enzymes (AMEs), 16S rRNA methylases, integron-related genes and OprD. Expression of genes coding for efflux pumps and AmpC cephalosporinase were assessed by quantitative PCR. The outer membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The blaSPM-1, blaKPC-2 and blaGES-1 genes were detected in P. aeruginosaisolates in addition to different AME genes. The loss of OprD in nine isolates was mainly due to frameshift mutations, premature stop codons and point mutations. An association of loss of OprD with the overexpression of MexAB-OprM and MexXY-OprM was observed in most isolates. Hyper-production of AmpC was also observed in three isolates. Clonal relationship of the isolates was determined by repetitive element palindromic-PCR and multilocus sequence typing. Our results show that the loss of OprD along with overexpression of efflux pumps and β-lactamase production were responsible for the multidrug resistance in the isolates analysed.
Resumo:
In this study, PCR assays targeting different Leishmania heat-shock protein 70 gene (hsp70) regions, producing fragments ranging in size from 230-390 bp were developed and evaluated to determine their potential as a tool for the specific molecular diagnosis of cutaneous leishmaniasis (CL). A total of 70 Leishmania strains were analysed, including seven reference strains (RS) and 63 previously typed strains. Analysis of the RS indicated a specific region of 234 bp in the hsp70 gene as a valid target that was highly sensitive for detection of Leishmania species DNA with capacity of distinguishing all analyzed species, after polymerase chain reaction-restriction fragment length polymorfism (PCR-RFLP). This PCR assay was compared with other PCR targets used for the molecular diagnosis of leishmaniasis: hsp70 (1400-bp region), internal transcribed spacer (ITS)1 and glucose-6-phosphate dehydrogenase (G6pd). A good agreement among the methods was observed concerning the Leishmania species identification. Moreover, to evaluate the potential for molecular diagnosis, we compared the PCR targets hsp70-234 bp, ITS1, G6pd and mkDNA using a panel of 99 DNA samples from tissue fragments collected from patients with confirmed CL. Both PCR-hsp70-234 bp and PCR-ITS1 detected Leishmania DNA in more than 70% of the samples. However, using hsp70-234 bp PCR-RFLP, identification of all of the Leishmania species associated with CL in Brazil can be achieved employing a simpler and cheaper electrophoresis protocol.
Resumo:
Shigella spp are Gram-negative, anaerobic facultative, non-motile, and non-sporulated bacilli of the Enterobacteriaceae family responsible for "Shigellosis" or bacillary dysentery, an important cause of worldwide morbidity and mortality. However, despite this, there are very few epidemiological studies about this bacterium in Brazil. We studied the antibiotic resistance profiles and the clonal structure of 60 Shigella strains (30 S. flexneri and 30 S. sonnei) isolated from shigellosis cases in different cities within the metropolitan area of Campinas, State of São Paulo, Brazil. We used the following well-characterized molecular techniques: enterobacterial repetitive intergenic consensus, repetitive extragenic palindromic, and double-repetitive element-polymerase chain reaction to characterize the bacteria. Also, the antibiotic resistance of the strains was determined by the diffusion disk method. Many strains of S. flexneri and S. sonnei were found to be multi-resistant. S. flexneri strains were resistant to ampicillin in 83.3% of cases, chloramphenicol in 70.0%, streptomycin in 86.7%, sulfamethoxazole in 80.0%, and tetracycline in 80.0%, while a smaller number of strains were resistant to cephalothin (3.3%) and sulfazotrim (10.0%). S. sonnei strains were mainly resistant to sulfamethoxazole (100.0%) and tetracycline (96.7%) and, to a lesser extent, to ampicillin (6.7%) and streptomycin (26.7%). Polymerase chain reaction-based typing supported the existence of specific clones responsible for the shigellosis cases in the different cities and there was evidence of transmission between cities. This clonal structure would probably be the result of selection for virulence and resistance phenotypes. These data indicate that the human sanitary conditions of the cities investigated should be improved.
Resumo:
Mycobacterium tuberculosis is the bacterium that causes tuberculosis (TB), a leading cause of death from infectious disease worldwide. Rapid diagnosis of resistant strains is important for the control of TB. Real-time polymerase chain reaction (RT-PCR) assays may detect all of the mutations that occur in the M. tuberculosis 81-bp core region of the rpoB gene, which is responsible for resistance to rifampin (RIF) and codon 315 of the katG gene and the inhA ribosomal binding site, which are responsible for isoniazid (INH). The goal of this study was to assess the performance of RT-PCR compared to traditional culture-based methods for determining the drug susceptibility of M. tuberculosis. BACTEC TM MGIT TM 960 was used as the gold standard method for phenotypic drug susceptibility testing. Susceptibilities to INH and RIF were also determined by genotyping of katG, inhA and rpoB genes. RT-PCR based on molecular beacons probes was used to detect specific point mutations associated with resistance. The sensitivities of RT-PCR in detecting INH resistance using katG and inhA targets individually were 55% and 25%, respectively and 73% when combined. The sensitivity of the RT-PCR assay in detecting RIF resistance was 99%. The median time to complete the RT-PCR assay was three-four hours. The specificities for tests were both 100%. Our results confirm that RT-PCR can detect INH and RIF resistance in less than four hours with high sensitivity.
Resumo:
The Global Program for the Elimination of Lymphatic Filariasis (GPELF) aims to eliminate this disease by the year 2020. However, the development of more specific and sensitive tests is important for the success of the GPELF. The present study aimed to standardise polymerase chain reaction (PCR)-based systems for the diagnosis of filariasis in serum and urine. Twenty paired biological urine and serum samples from individuals already known to be positive for Wuchereria bancrofti were collected during the day. Conventional PCR and semi-nested PCR assays were optimised. The detection limit of the technique for purified W. bancrofti DNA extracted from adult worms was 10 fg for the internal systems (WbF/Wb2) and 0.1 fg by using semi-nested PCR. The specificity of the primers was confirmed experimentally by amplification of 1 ng of purified genomic DNA from other species of parasites. Evaluation of the paired urine and serum samples by the semi-nested PCR technique indicated only two of the 20 tested individuals were positive, whereas the simple internal PCR system (WbF/Wb2), which has highly promising performance, revealed that all the patients were positive using both samples. This study successfully demonstrated the possibility of using the PCR technique on urine for the diagnosis of W. bancrofti infection.
Resumo:
This study aimed to evaluate well-documented diagnostic antigens, named B13, 1F8 and JL7 recombinant proteins, as potential markers of seroconversion in treated chagasic patients. Prospective study, involving 203 patients treated with benznidazole, was conducted from endemic areas of northern Argentina. Follow-up was possible in 107 out of them and blood samples were taken for serology and PCR assays before and 2, 3, 6, 12, 24 and 36 months after treatment initiation. Reactivity against Trypanosoma cruzi lysate and recombinant antigens was measured by ELISA. The rate of decrease of antibody titers showed nonlinear kinetics with an abrupt drop within the first three months after initiation of treatment for all studied antigens, followed by a plateau displaying a low decay until the end of follow-up. At this point, anti-B13, anti-1F8 and anti-JL7 titers were relatively close to the cut-off line, while anti-T. cruzi antibodies still remained positive. At baseline, 60.8% (45/74) of analysed patients tested positive for parasite DNA by PCR and during the follow-up period in 34 out of 45 positive samples (75.5%) could not be detected T. cruzi DNA. Our results suggest that these antigens might be useful as early markers for monitoring antiparasitic treatment in chronic Chagas disease.
Resumo:
In Brazil, the main etiologic agent of Leishmaniasis that frequently presents with mucosal involvement belongs to the Viannia subgenus. The therapeutic conduct in this disease depends on the parasitological diagnosis, and classical methods are restricted in identifying the agent. In this paper we describe a polymerase chain reaction (PCR), which uses primers designed from mini-exons repetitive sequences. The PCR amplifies a 177bp fragment that can distinguish (Viannia) from (Leishmania) subgenus. This test could be a useful diagnostic tool.
Resumo:
INTRODUCTION: HTLV-1/2 screening among blood donors commonly utilizes an enzyme-linked immunosorbent assay (EIA), followed by a confirmatory method such as Western blot (WB) if the EIA is positive. However, this algorithm yields a high rate of inconclusive results, and is expensive. METHODS: Two qualitative real-time PCR assays were developed to detect HTLV-1 and 2, and a total of 318 samples were tested (152 blood donors, 108 asymptomatic carriers, 26 HAM/TSP patients and 30 seronegative individuals). RESULTS: The sensitivity and specificity of PCR in comparison with WB results were 99.4% and 98.5%, respectively. PCR tests were more efficient for identifying the virus type, detecting HTLV-2 infection and defining inconclusive cases. CONCLUSIONS: Because real-time PCR is sensitive and practical and costs much less than WB, this technique can be used as a confirmatory test for HTLV in blood banks, as a replacement for WB.
Resumo:
Introduction Herein, we report a one-tube, semi-nested-polymerase chain reaction (OTsn-PCR) assay for the detection of Paracoccidioides brasiliensis. Methods We developed the OTsn-PCR assay for the detection of P. brasiliensis in clinical specimens and compared it with other PCR methods. Results The OTsn-PCR assay was positive for all clinical samples, and the detection limit was better or equivalent to the other nested or semi-nested PCR methods for P. brasiliensis detection. Conclusions The OTsn-PCR assay described in this paper has a detection limit similar to other reactions for the molecular detection of P. brasiliensis, but this approach is faster and less prone to contamination than other conventional nested or semi-nested PCR assays.
Resumo:
Little is known about transmission and drug resistance of tuberculosis (TB) in Bauru, State of São Paulo. The objective of this study was to evaluate risk factors for transmission of Mycobacterium tuberculosis strains in this area. Strains were collected from patients attended at ambulatory services in the region and susceptibility towards the main first line antibiotics was determined and fingerprinting performed. A total of 57 strains were submitted to susceptibility testing: 23 (42.6%) were resistant to at least one drug while 3 (13%) were resistant against both rifampicin and isoniazide. Resistant strains had been isolated from patients that had not (n = 13) or had (n = 9) previously been submitted to anti-TB treatment, demonstrating a preoccupying high level of primary resistance in the context of the study. All strains were submitted to IS6110 restriction fragment length polymorphism (IS6110-RFLP) and double repetitive element PCR (DRE-PCR). Using IS6110-RFLP, 26.3% of the strains were clustered and one cluster of 3 patients included 2 HIV-infected individuals that had been hospitalized together during 16 days; clustering of strains of patients from the hospital was however not higher than that of patients attended at health posts. According to DRE-PCR, 55.3% belonged to a cluster, confirming the larger discriminatory power of IS6110-RFLP when compared to DRE-PCR, that should therefore be used as a screening procedure only. No clinical, epidemiological or microbiological characteristics were associated with clustering so risk factors for transmission of TB could not be defined in the present study.