22 resultados para Remote sensing,Sentinel-2,Suoli nudi,Indice di vegetazione,Biomasse
em Scielo Saúde Pública - SP
Resumo:
ABSTRACT The spatial distribution of forest biomass in the Amazon is heterogeneous with a temporal and spatial variation, especially in relation to the different vegetation types of this biome. Biomass estimated in this region varies significantly depending on the applied approach and the data set used for modeling it. In this context, this study aimed to evaluate three different geostatistical techniques to estimate the spatial distribution of aboveground biomass (AGB). The selected techniques were: 1) ordinary least-squares regression (OLS), 2) geographically weighted regression (GWR) and, 3) geographically weighted regression - kriging (GWR-K). These techniques were applied to the same field dataset, using the same environmental variables derived from cartographic information and high-resolution remote sensing data (RapidEye). This study was developed in the Amazon rainforest from Sucumbíos - Ecuador. The results of this study showed that the GWR-K, a hybrid technique, provided statistically satisfactory estimates with the lowest prediction error compared to the other two techniques. Furthermore, we observed that 75% of the AGB was explained by the combination of remote sensing data and environmental variables, where the forest types are the most important variable for estimating AGB. It should be noted that while the use of high-resolution images significantly improves the estimation of the spatial distribution of AGB, the processing of this information requires high computational demand.
Resumo:
The objective of this work was to evaluate the use of multispectral remote sensing for site-specific nitrogen fertilizer management. Satellite imagery from the advanced spaceborne thermal emission and reflection radiometer (Aster) was acquired in a 23 ha corn-planted area in Iran. For the collection of field samples, a total of 53 pixels were selected by systematic randomized sampling. The total nitrogen content in corn leaf tissues in these pixels was evaluated. To predict corn canopy nitrogen content, different vegetation indices, such as normalized difference vegetation index (NDVI), soil-adjusted vegetation index (Savi), optimized soil-adjusted vegetation index (Osavi), modified chlorophyll absorption ratio index 2 (MCARI2), and modified triangle vegetation index 2 (MTVI2), were investigated. The supervised classification technique using the spectral angle mapper classifier (SAM) was performed to generate a nitrogen fertilization map. The MTVI2 presented the highest correlation (R²=0.87) and is a good predictor of corn canopy nitrogen content in the V13 stage, at 60 days after cultivating. Aster imagery can be used to predict nitrogen status in corn canopy. Classification results indicate three levels of required nitrogen per pixel: low (0-2.5 kg), medium (2.5-3 kg), and high (3-3.3 kg).
Resumo:
This study compares the precision of three image classification methods, two of remote sensing and one of geostatistics applied to areas cultivated with citrus. The 5,296.52ha area of study is located in the city of Araraquara - central region of the state of São Paulo (SP), Brazil. The multispectral image from the CCD/CBERS-2B satellite was acquired in 2009 and processed through the Geographic Information System (GIS) SPRING. Three classification methods were used, one unsupervised (Cluster), and two supervised (Indicator Kriging/IK and Maximum Likelihood/Maxver), in addition to the screen classification taken as field checking.. Reliability of classifications was evaluated by Kappa index. In accordance with the Kappa index, the Indicator kriging method obtained the highest degree of reliability for bands 2 and 4. Moreover the Cluster method applied to band 2 (green) was the best quality classification between all the methods. Indicator Kriging was the classifier that presented the citrus total area closest to the field check estimated by -3.01%, whereas Maxver overestimated the total citrus area by 42.94%.
Resumo:
Schistosomiasis mansoni is not just a physical disease, but is related to social and behavioural factors as well. Snails of the Biomphalaria genus are an intermediate host for Schistosoma mansoni and infect humans through water. The objective of this study is to classify the risk of schistosomiasis in the state of Minas Gerais (MG). We focus on socioeconomic and demographic features, basic sanitation features, the presence of accumulated water bodies, dense vegetation in the summer and winter seasons and related terrain characteristics. We draw on the decision tree approach to infection risk modelling and mapping. The model robustness was properly verified. The main variables that were selected by the procedure included the terrain's water accumulation capacity, temperature extremes and the Human Development Index. In addition, the model was used to generate two maps, one that included risk classification for the entire of MG and another that included classification errors. The resulting map was 62.9% accurate.
Resumo:
Embora os ftalatos sejam um dos poluentes mais frequentemente encontrados no meio ambiente, há escassez de dados na literatura sobre biorremediação de solos tropicais contaminados por esses compostos. Por esse motivo, este estudo avaliou a biorremediação de um solo contaminado com os plastificantes DEHP (Bis-2-etilhexilftalato), DIDP (Di-isodecilftalato) e álcool isobutílico, por uma indústria no Estado de São Paulo. A biorremediação ocorreu pela utilização de microrganismos presentes no solo e pela adição de inóculo adaptado em reator em fase de lama. O reator foi monitorado durante 120 dias, sendo corrigida apenas a umidade do solo. Os resultados indicaram que a biodegradação dos ftalatos seguiu uma cinética de primeira ordem e a biorremediação ocorreu na faixa de pH entre 7,4 e 8,4 e temperaturas entre 17 e 25 ºC, com eficiência de remoção de contaminantes acima de 70 %. Após 120 dias, o teor de DEHP estava abaixo de 4 mg kg-1, limite estipulado pela legislação brasileira para solo de uso residencial.
Resumo:
Field-based soil moisture measurements are cumbersome. Thus, remote sensing techniques are needed because allows field and landscape-scale mapping of soil moisture depth-averaged through the root zone of existing vegetation. The objective of the study was to evaluate the accuracy of an empirical relationship to calculate soil moisture from remote sensing data of irrigated soils of the Apodi Plateau, in the Brazilian semiarid region. The empirical relationship had previously been tested for irrigated soils in Mexico, Egypt, and Pakistan, with promising results. In this study, the relationship was evaluated from experimental data collected from a cotton field. The experiment was carried out in an area of 5 ha with irrigated cotton. The energy balance and evaporative fraction (Λ) were measured by the Bowen ratio method. Soil moisture (θ) data were collected using a PR2 - Profile Probe (Delta-T Devices Ltd). The empirical relationship was tested using experimentally collected Λ and θ values and was applied using the Λ values obtained from the Surface Energy Balance Algorithm for Land (SEBAL) and three TM - Landsat 5 images. There was a close correlation between measured and estimated θ values (p<0.05, R² = 0.84) and there were no significant differences according to the Student t-test (p<0.01). The statistical analyses showed that the empirical relationship can be applied to estimate the root-zone soil moisture of irrigated soils, i.e. when the evaporative fraction is greater than 0.45.
Resumo:
The aim of this study was to use digital images acquired by cameras attached to a helium balloon to detect variation of the nutritional status in Brachiaria decumbens. The treatments consisted of five doses of nitrogen (0, 50, 100, 150 e 200kg ha-1) with six replications each, evaluated in a completely randomized statistical design. A remote sensing system composed of digital cameras and microcomputers was used for image acquisition, and a helium balloon lifted the cameras to the heights of 15, 20, 25 and 30m. A portable chlorophyll meter and analyses of leaf nitrogen content were used to make comparisons with data obtained by the remote sensing system. Data was acquired in two phases, in different climatic conditions. At the end of each phase, dry matter production was measured. Three vegetation indices were used to evaluate the detection of different nutritional status. The three indices were able to detect the effects of N doses. The indices constructed with the Green spectral band showed to be more efficient.
Resumo:
The relationships between environmental exposure to risk agents and health conditions have been studied with the aid of remote sensing imagery, a tool particularly useful in the study of vegetation cover. This study aims to evaluate the influence of environmental variables on the spatial distribution of the abundance of Lutzomyia longipalpis and the reported canine and human visceral leishmaniasis (VL) cases at an urban area of Campo Grande, state of Mato Grosso do Sul. The sandfly captures were performed in 13 residences that were selected by raffle considering four residences or collection station for buffer. These buffers were generated from the central house with about 50, 100 and 200 m from it in an endemic area of VL. The abundance of sandflies and human and canine cases were georreferenced using the GIS software PCI Geomatica. The normalized difference vegetation index (NDVI) and percentage of land covered by vegetation were the environmental variables extracted from a remote sensing IKONOS-2 image. The average NDVI was considered as the complexity of habitat and the standard deviation as the heterogeneity of habitat. One thousand three hundred sixty-seven specimens were collected during the catch. We found a significant positive linear correlation between the abundance of sandflies and the percentage of vegetation cover and average NDVI. However, there was no significant association between habitat heterogeneity and the abundance of these flies.
Resumo:
Given the limitations of different types of remote sensing images, automated land-cover classifications of the Amazon várzea may yield poor accuracy indexes. One way to improve accuracy is through the combination of images from different sensors, by either image fusion or multi-sensor classifications. Therefore, the objective of this study was to determine which classification method is more efficient in improving land cover classification accuracies for the Amazon várzea and similar wetland environments - (a) synthetically fused optical and SAR images or (b) multi-sensor classification of paired SAR and optical images. Land cover classifications based on images from a single sensor (Landsat TM or Radarsat-2) are compared with multi-sensor and image fusion classifications. Object-based image analyses (OBIA) and the J.48 data-mining algorithm were used for automated classification, and classification accuracies were assessed using the kappa index of agreement and the recently proposed allocation and quantity disagreement measures. Overall, optical-based classifications had better accuracy than SAR-based classifications. Once both datasets were combined using the multi-sensor approach, there was a 2% decrease in allocation disagreement, as the method was able to overcome part of the limitations present in both images. Accuracy decreased when image fusion methods were used, however. We therefore concluded that the multi-sensor classification method is more appropriate for classifying land cover in the Amazon várzea.
Resumo:
A 0.125 degree raster or grid-based Geographic Information System with data on tsetse, trypanosomosis, animal production, agriculture and land use has recently been developed in Togo. This paper addresses the problem of generating tsetse distribution and abundance maps from remotely sensed data, using a restricted amount of field data. A discriminant analysis model is tested using contemporary tsetse data and remotely sensed, low resolution data acquired from the National Oceanographic and Atmospheric Administration and Meteosat platforms. A split sample technique is adopted where a randomly selected part of the field measured data (training set) serves to predict the other part (predicted set). The obtained results are then compared with field measured data per corresponding grid-square. Depending on the size of the training set the percentage of concording predictions varies from 80 to 95 for distribution figures and from 63 to 74 for abundance. These results confirm the potential of satellite data application and multivariate analysis for the prediction, not only of the tsetse distribution, but more importantly of their abundance. This opens up new avenues because satellite predictions and field data may be combined to strengthen or substitute one another and thus reduce costs of field surveys.
Resumo:
Las Lomitas, Formosa, Argentina, reported 96 cases of tegumentary leishmaniasis during 2002. The urban transmission was suggested although previous outbreaks were related with floods of the Bermejo river (BR) 50 km from the village. Phlebotomine collections were performed during March 2002 to define the spatial distribution of risk, together with satellite imaginery. The phlebotomine/trap obtained was 1679.5 in the southern BR shore, 1.1 in the periruban-rural environment and 2.3 in the northern Pilcomayo river marshes. Lutzomyia neivai was the prevalent species (91.1%) among the 2393 phlebotomine captured, and it was only found in the BR traps. The other species were L. migonei (7.9%), L. cortelezzii (0.9%), and Brumptomyia guimaraesi (0.1%). The satellite images analysis indicates that the fishing spots at the BR were significantlyoverflowed during the transmission peak, consistent with fishermen recollections. This spatial restricted flood might concentrate vectors, reservoirs, and humans in high places. Therefore, both the spatial distribution of vectors and the sensor remoting data suggests that in Las Lomitas area the higher transmission risk it is still related with the gallery forest of the BR, despite of the urban residence of the cases. The surveillance and control implications of these results are discussed.
Resumo:
Geographical information systems (GIS) are tools that have been recently tested for improving our understanding of the spatial distribution of disease. The objective of this paper was to further develop the GIS technology to model and control schistosomiasis using environmental, social, biological and remote-sensing variables. A final regression model (R² = 0.39) was established, after a variable selection phase, with a set of spatial variables including the presence or absence of Biomphalaria glabrata, winter enhanced vegetation index, summer minimum temperature and percentage of houses with water coming from a spring or well. A regional model was also developed by splitting the state of Minas Gerais (MG) into four regions and establishing a linear regression model for each of the four regions: 1 (R² = 0.97), 2 (R² = 0.60), 3 (R² = 0.63) and 4 (R² = 0.76). Based on these models, a schistosomiasis risk map was built for MG. In this paper, geostatistics was also used to make inferences about the presence of Biomphalaria spp. The result was a map of species and risk areas. The obtained risk map permits the association of uncertainties, which can be used to qualify the inferences and it can be thought of as an auxiliary tool for public health strategies.
Resumo:
Soil science has sought to develop better techniques for the classification of soils, one of which is the use of remote sensing applications. The use of ground sensors to obtain soil spectral data has enabled the characterization of these data and the advancement of techniques for the quantification of soil attributes. In order to do this, the creation of a soil spectral library is necessary. A spectral library should be representative of the variability of the soils in a region. The objective of this study was to create a spectral library of distinct soils from several agricultural regions of Brazil. Spectral data were collected (using a Fieldspec sensor, 350-2,500 nm) for the horizons of 223 soil profiles from the regions of Matão, Paraguaçu Paulista, Andradina, Ipaussu, Mirandópolis, Piracicaba, São Carlos, Araraquara, Guararapes, Valparaíso (SP); Naviraí, Maracajú, Rio Brilhante, Três Lagoas (MS); Goianésia (GO); and Uberaba and Lagoa da Prata (MG). A Principal Component Analysis (PCA) of the data was then performed and a graphic representation of the spectral curve was created for each profile. The reflectance intensity of the curves was principally influenced by the levels of Fe2O3, clay, organic matter and the presence of opaque minerals. There was no change in the spectral curves in the horizons of the Latossolos, Nitossolos, and Neossolos Quartzarênicos. Argissolos had superficial horizon curves with the greatest intensity of reflection above 2,200 nm. Cambissolos and Neossolos Litólicos had curves with greater reflectance intensity in poorly developed horizons. Gleisols showed a convex curve in the region of 350-400 nm. The PCA was able to separate different data collection areas according to the region of source material. Principal component one (PC1) was correlated with the intensity of reflectance samples and PC2 with the slope between the visible and infrared samples. The use of the Spectral Library as an indicator of possible soil classes proved to be an important tool in profile classification.
Resumo:
Soil surveys are the main source of spatial information on soils and have a range of different applications, mainly in agriculture. The continuity of this activity has however been severely compromised, mainly due to a lack of governmental funding. The purpose of this study was to evaluate the feasibility of two different classifiers (artificial neural networks and a maximum likelihood algorithm) in the prediction of soil classes in the northwest of the state of Rio de Janeiro. Terrain attributes such as elevation, slope, aspect, plan curvature and compound topographic index (CTI) and indices of clay minerals, iron oxide and Normalized Difference Vegetation Index (NDVI), derived from Landsat 7 ETM+ sensor imagery, were used as discriminating variables. The two classifiers were trained and validated for each soil class using 300 and 150 samples respectively, representing the characteristics of these classes in terms of the discriminating variables. According to the statistical tests, the accuracy of the classifier based on artificial neural networks (ANNs) was greater than of the classic Maximum Likelihood Classifier (MLC). Comparing the results with 126 points of reference showed that the resulting ANN map (73.81 %) was superior to the MLC map (57.94 %). The main errors when using the two classifiers were caused by: a) the geological heterogeneity of the area coupled with problems related to the geological map; b) the depth of lithic contact and/or rock exposure, and c) problems with the environmental correlation model used due to the polygenetic nature of the soils. This study confirms that the use of terrain attributes together with remote sensing data by an ANN approach can be a tool to facilitate soil mapping in Brazil, primarily due to the availability of low-cost remote sensing data and the ease by which terrain attributes can be obtained.
Resumo:
Peatlands are soil environments that store carbon and large amounts of water, due to their composition (90 % water), low hydraulic conductivity and a sponge-like behavior. It is estimated that peat bogs cover approximately 4.2 % of the Earth's surface and stock 28.4 % of the soil carbon of the planet. Approximately 612 000 ha of peatlands have been mapped in Brazil, but the peat bogs in the Serra do Espinhaço Meridional (SdEM) were not included. The objective of this study was to map the peat bogs of the northern part of the SdEM and estimate the organic matter pools and water volume they stock. The peat bogs were pre-identified and mapped by GIS and remote sensing techniques, using ArcGIS 9.3, ENVI 4.5 and GPS Track Maker Pro software and the maps validated in the field. Six peat bogs were mapped in detail (1:20,000 and 1:5,000) by transects spaced 100 m and each transect were determined every 20 m, the UTM (Universal Transverse Mercator) coordinates, depth and samples collected for characterization and determination of organic matter, according to the Brazilian System of Soil Classification. In the northern part of SdEM, 14,287.55 ha of peatlands were mapped, distributed over 1,180,109 ha, representing 1.2 % of the total area. These peatlands have an average volume of 170,021,845.00 m³ and stock 6,120,167 t (428.36 t ha-1) of organic matter and 142,138,262 m³ (9,948 m³ ha-1) of water. In the peat bogs of the Serra do Espinhaço Meridional, advanced stages of decomposing (sapric) organic matter predominate, followed by the intermediate stage (hemic). The vertical growth rate of the peatlands ranged between 0.04 and 0.43 mm year-1, while the carbon accumulation rate varied between 6.59 and 37.66 g m-2 year-1. The peat bogs of the SdEM contain the headwaters of important water bodies in the basins of the Jequitinhonha and San Francisco Rivers and store large amounts of organic carbon and water, which is the reason why the protection and preservation of these soil environments is such an urgent and increasing need.