73 resultados para Rainfall data
em Scielo Saúde Pública - SP
Resumo:
Introduction Our objective was to evaluate the influence of rainfall regime on the population dynamics of Biomphalaria in a potential urban focus of schistosomiasis in Aracaju, Brazil, during 2009-2010. Methods Snails were collected monthly and were counted, measured and identified; the level of infection and fecal contamination at the sampling sites was determined; rainfall data were obtained. Results High levels of fecal contamination were observed, and the abundance of Biomphalaria glabrata increased during the rainy and post-rainy seasons. The snails' size was variable, and infected snails were identified independently of rainfall. Conclusions These results provide evidence of anthropogenic and climate interference in an urban focus of schistosomiasis in the Aracaju metropolitan area.
Resumo:
Rainfall data registered betwe en 1910 and 1979 at Manaus confirm the existence of a dry season between June and November (monthly rainfall: 42-162mm) and a rainy season from December until May (monthly rainfall: 211-300mm). Annual precipitation amounted to 2105mm with about 75% of the rainfall recorded during the rainy season. Rainfall data collected over 12 months at eigth stations in the vicinity of and at Manaus are compared. Annual precipitation was lower in Inundation Regions (1150-2150mm) compared with Dryland Regions (2400-2550mm). Considerable differences are found in rainfall patterns (intensity, frequency and time of rainfall). This is also truefor neighbouring stations, even if data of a 11-year record period are compared. Thus, it is highly recommended that preciptation data for bioecological studies be collected at the study site.
Resumo:
Knowledge on the factors influencing water erosion is fundamental for the choice of the best land use practices. Rainfall, expressed by rainfall erosivity, is one of the most important factors of water erosion. The objective of this study was to determine rainfall erosivity and the return period of rainfall in the Coastal Plains region, near Aracruz, a town in the state of Espírito Santo, Brazil, based on available data. Rainfall erosivity was calculated based on historic rainfall data, collected from January 1998 to July 2004 at 5 min intervals, by automatic weather stations of the Aracruz Cellulose S.A company. A linear regression with individual rainfall and erosivity data was fit to obtain an equation that allowed data extrapolation to calculate individual erosivity for a 30-year period. Based on this data the annual average rainfall erosivity in Aracruz was 8,536 MJ mm ha-1 h-1 yr-1. Of the total annual rainfall erosivity 85 % was observed in the most critical period October to March. Annual erosive rains accounted for 38 % of the events causing erosion, although the runoff volume represented 88 % of the total. The annual average rainfall erosivity return period was estimated to be 3.4 years.
Resumo:
Knowledge of intensity-duration-frequency (IDF) relationships of rainfall events is extremely important to determine the dimensions of surface drainage structures and soil erosion control. The purpose of this study was to obtain IDF equations of 13 rain gauge stations in the state of Santa Catarina in Brazil: Chapecó, Urussanga, Campos Novos, Florianópolis, Lages, Caçador, Itajaí, Itá, Ponte Serrada, Porto União, Videira, Laguna and São Joaquim. The daily rainfall data charts of each station were digitized and then the annual maximum rainfall series were determined for durations ranging from 5 to 1440 min. Based on these, with the Gumbel-Chow distribution, the maximum rainfall was estimated for durations ranging from 5 min to 24 h, considering return periods of 2, 5, 10, 20, 25, 50, and 100 years,. Data agreement with the Gumbel-Chow model was verified by the Kolmogorov-Smirnov test, at 5 % significance level. For each rain gauge station, two IDF equations of rainfall events were adjusted, one for durations from 5 to 120 min and the other from 120 to 1440 min. The results show a high variability in maximum intensity of rainfall events among the studied stations. Highest values of coefficients of variation in the annual maximum series of rainfall were observed for durations of over 600 min at the stations of the coastal region of Santa Catarina.
Resumo:
Rainfall erosivity is one of the main factors related to water erosion in the tropics. This work focused on relating soil loss from a typic dystrophic Tb Haplic Cambisol (CXbd) and a typic dystrophic Red Latosol (LVdf) to different patterns of natural erosive rainfall. The experimental plots of approximately 26 m² (3 x 8.67 m) consisted of a CXbd area with a 0.15 m m-1 slope and a LVdf area with 0.12 m m-1 slope, both delimited by galvanized plates. Drainpipes were installed at the lower part of these plots to collect runoff, interconnected with a Geib or multislot divisor. To calculate erosivity (EI30), rainfall data, recorded continuously at a weather station in Lavras, were used. The data of erosive rainfall events were measured (10 mm precipitation intervals, accuracy 0.2 mm, 24 h period, 20 min intervals), characterized as rainfall events with more than 10 mm precipitation, maximum intensity > 24 mm h-1 within 15 min, or kinetic energy > 3.6 MJ, which were used in this study to calculate the rainfall erosivity parameter, were classified according to the moment of peak precipitation intensity in advanced, intermediate and delayed patterns. Among the 139 erosive rainfall events with CXbd soil loss, 60 % were attributed to the advanced pattern, with a loss of 415.9 Mg ha-1, and total losses of 776.0 Mg ha-1. As for the LVdf, of the 93 erosive rainfall events with soil loss, 58 % were listed in the advanced pattern, with 37.8 Mg ha-1 soil loss and 50.9 Mg ha-1 of total soil loss. The greatest soil losses were observed in the advanced rain pattern, especially for the CXbd. From the Cambisol, the soil loss per rainfall event was greatest for the advanced pattern, being influenced by the low soil permeability.
Resumo:
The aim of this study was to generate maps of intense rainfall equation parameters using interpolated maximum intense rainfall data. The study area comprised Espírito Santo State, Brazil. A total of 59 intense rainfall equations were used to interpolate maximum intense rainfall, with a 1 x 1 km spatial resolution. Maximum intense rainfall was interpolated considering recurrence of 2; 5; 10; 20; 50 and 100 years, and duration of 10; 20; 30; 40; 50; 60; 120; 240; 360; 420; 660; 720; 900; 1,140; 1,380 and 1,440 minutes, resulting in 96 maps of maximum intense rainfall. The used interpolators were inverse distance weighting and ordinary kriging, for which significance level (p-value) and coefficient of determination (R²) were evaluated for the cross-validation data, choosing the method that presented better R² to generate maps. Finally, maps of maximum intense precipitation were used to estimate, cell by cell, the intense rainfall equation parameters. In comparison with literature data, the mean percentage error of estimated intense rainfall equations was 13.8%. Maps of spatialized parameters, obtained in this study, are of simple use; once they are georeferenced, they may be imported into any geographic information system to be used for a specific area of interest.
Resumo:
Due to the lack of information concerning maximum rainfall equations for most locations in Mato Grosso do Sul State, the alternative for carrying out hydraulic work projects has been information from meteorological stations closest to the location in which the project is carried out. Alternative methods, such as 24 hours rain disaggregation method from rainfall data due to greater availability of stations and longer observations can work. Based on this approach, the objective of this study was to estimate maximum rainfall equations for Mato Grosso do Sul State by adjusting the 24 hours rain disaggregation method, depending on data obtained from rain gauge stations from Dourado and Campo Grande. For this purpose, data consisting of 105 rainfall stations were used, which are available in the ANA (Water Resources Management National Agency) database. Based on the results we concluded: the intense rainfall equations obtained by pluviogram analysis showed determination coefficient above 99%; and the performance of 24 hours rain disaggregation method was classified as excellent, based on relative average error WILMOTT concordance index (1982).
Resumo:
In areas where there is irrigated agriculture, the recuperation of water reserves in alluvial aquifers may occur preferentially due to precipitation. Recharging can be evaluated from variation information of water depth measured in piezometers or observation wells. Thus, the aim of this research is to study the recharge in the alluvial aquifer formed by the Mimoso temporary stream in the semiarid region of Pernambuco (PE), Brazil, using the method of the fluctuation of the water level. This system is typical on the Brazilian Northeast semiarid region, using groundwater for domestic supply and for irrigation on small scale agriculture. Monthly potentiometric levels and rainfall data were used. The selected period for the study, from January 2002 to October 2009, involved extreme events of flooding and droughts as well as regular years, providing a better understanding of the behavior of the alluvial recharge. It was found that the system responds significantly to precipitation events. It was also observed that even with different soil textures in the study area, recharge factors were not significantly different. The study provided a better understanding of the behavior of aquifer recharge and its relationship with the soil and the rainfall events in the region.
Resumo:
INTRODUCTION: Visceral leishmaniasis is a serious public health problem that requires global control strategies, especially with respect to factors that may intervene in reducing the incidence of endemicity. In this work, rainfall density and temperature were correlated with the incidence of human cases in an area endemic for leishmaniasis in São Luis do Maranhão, Northeastern Brazil. METHODS: Notification of human cases by the National Health Foundation/Regional Coordination of Maranhão (FUNASA/COREMA) from 2002 to 2010 was used. Ecological data (mean temperature and rainfall density) were provided by the Meteorological Office of State. RESULTS: A significant association was verified between the number of VL cases and rainfall rate but not in the analysis concerning mean temperatures. CONCLUSIONS: These data suggest that the control actions in visceral leishmaniasis should be performed during rainy season in the State of Maranhão, which is in the first half of the year.
Resumo:
The distinction between convective and stratiform precipitation profiles around various precipitating systems existent in tropical regions is very important to the global atmospheric circulation, which is extremely sensitive to vertical latent heat distribution. In South America, the convective activity responds to the Intraseasonal Oscillation (IOS). This paper analyzes a disdrometer and a radar profiler data, installed in the Ji-Paraná airport, RO, Brazil, for the field experiment WETAMC/LBA & TRMM/LBA, during January and February of 1999. The microphysical analysis of wind regimes associated with IOS showed a large difference in type, size and microphysical processes of hydrometeor growth in each wind regime: easterly regimes had more turbulence and consequently convective precipitation formation, and westerly regimes had a more stratiform precipitation formation.
Resumo:
Coupled carbon/climate models are predicting changes in Amazon carbon and water cycles for the near future, with conversion of forest into savanna-like vegetation. However, empirical data to support these models are still scarce for Amazon. Facing this scenario, we investigated whether conservation status and changes in rainfall regime have influenced the forest-savanna mosaic over 20 years, from 1986 to 2006, in a transitional area in Northern Amazonia. By applying a spectral linear mixture model to a Landsat-5-TM time series, we identified protected savanna enclaves within a strictly protected nature reserve (Maracá Ecological Station - MES) and non-protected forest islands at its outskirts and compared their areas among 1986/1994/2006. The protected savanna enclaves decreased 26% in the 20-years period at an average rate of 0.131 ha year-1, with a greater reduction rate observed during times of higher precipitation, whereas the non-protected forest islands remained stable throughout the period of study, balancing the encroachment of forests into the savanna during humid periods and savannization during reduced rainfall periods. Thus, keeping favorable climate conditions, the MES conservation status would continue to favor the forest encroachment upon savanna, while the non-protected outskirt areas would remain resilient to disturbance regimes. However, if the increases in the frequency of dry periods predicted by climate models for this region are confirmed, future changes in extension and directions of forest limits will be affected, disrupting ecological services as carbon storage and the maintenance of local biodiversity.
Resumo:
Intensification of agricultural production without a sound management and regulations can lead to severe environmental problems, as in Western Santa Catarina State, Brazil, where intensive swine production has caused large accumulations of manure and consequently water pollution. Natural resource scientists are asked by decision-makers for advice on management and regulatory decisions. Distributed environmental models are useful tools, since they can be used to explore consequences of various management practices. However, in many areas of the world, quantitative data for model calibration and validation are lacking. The data-intensive distributed environmental model AgNPS was applied in a data-poor environment, the upper catchment (2,520 ha) of the Ariranhazinho River, near the city of Seara, in Santa Catarina State. Steps included data preparation, cell size selection, sensitivity analysis, model calibration and application to different management scenarios. The model was calibrated based on a best guess for model parameters and on a pragmatic sensitivity analysis. The parameters were adjusted to match model outputs (runoff volume, peak runoff rate and sediment concentration) closely with the sparse observed data. A modelling grid cell resolution of 150 m adduced appropriate and computer-fit results. The rainfall runoff response of the AgNPS model was calibrated using three separate rainfall ranges (< 25, 25-60, > 60 mm). Predicted sediment concentrations were consistently six to ten times higher than observed, probably due to sediment trapping along vegetated channel banks. Predicted N and P concentrations in stream water ranged from just below to well above regulatory norms. Expert knowledge of the area, in addition to experience reported in the literature, was able to compensate in part for limited calibration data. Several scenarios (actual, recommended and excessive manure applications, and point source pollution from swine operations) could be compared by the model, using a relative ranking rather than quantitative predictions.
Resumo:
The purpose of this study was to adjust equations that establish relationships between rainfall events with different duration and data from weather stations in the state of Santa Catarina, Brazil. In this study, the relationships between different duration heavy rainfalls from 13 weather stations of Santa Catarina were analyzed. From series of maximum annual rainfalls, and using the Gumbel-Chow distribution, the maximum rainfall for durations between 5 min and 24 h were estimated considering return periods from 2 to 100 years. The data fit to the Gumbel-Chow model was verified by the Kolmogorov-Smirnov test at 5 % significance. The coefficients of Bell's equation were adjusted to estimate the relationship between rainfall duration t (min) and the return period T (y) in relation to the maximum rainfall with a duration of 1 hour and a 10 year return period. Likewise, the coefficients of Bell's equation were adjusted based on the maximum rainfall with a duration of 1 day and a 10 year return period. The results showed that these relationships are viable to estimate short-duration rainfall events at locations where there are no rainfall records.
Resumo:
This study aimed to describe the probabilistic structure of the annual series of extreme daily rainfall (Preabs), available from the weather station of Ubatuba, State of São Paulo, Brazil (1935-2009), by using the general distribution of extreme value (GEV). The autocorrelation function, the Mann-Kendall test, and the wavelet analysis were used in order to evaluate the presence of serial correlations, trends, and periodical components. Considering the results obtained using these three statistical methods, it was possible to assume the hypothesis that this temporal series is free from persistence, trends, and periodicals components. Based on quantitative and qualitative adhesion tests, it was found that the GEV may be used in order to quantify the probabilities of the Preabs data. The best results of GEV were obtained when the parameters of this function were estimated using the method of maximum likelihood. The method of L-moments has also shown satisfactory results.
Resumo:
The climate variability between the growth and harvesting of sugar cane is very important because it directly affects yield. The MODIS sensor has characteristics like spatial and temporal resolution that can be applied to monitoring of vegetative vigor variability in the land surface and then, temporal profiles generation. Agro meteorological data from ECMWF model are free and easy to access and have a good representation of reality. In this study, we used the period between sugar cane growth and harvest in the state of Sao Paulo, Brazil, from temporal profiles selecting of NDVI behavior. For each period the precipitation, evapotranspiration, global radiation, length (days) and degree-days were accumulated. The periods were presented in a map format on MODIS spatial resolution of 250 meters. The results showed the spatial variability of climate variables and the relationship to the reality presented by official data.