75 resultados para Rainfall Simulation
em Scielo Saúde Pública - SP
Resumo:
An experimental test of rainfall as a control agent of Glycaspis brimblecombei Moore (Hemiptera, Psyllidae) on seedlings of Eucalyptus camaldulensis Dehn (Myrtaceae). Glycaspis brimblecombei is one the greatest threats to eucalyptus plantations in Brazil. The effects of rainfall to reduce the abundance of lerp of Glycaspis brimblecombei on experimentally infested seedlings of Eucalyptus camaldulensis were assessed. The number of lerps on the adaxial and abaxial surfaces of every leaf of 60 seedlings was recorded, before and after submission to the following treatments: "artificial rain", "leaf wetting" and control. A drastic reduction in lerp abundance per plant was observed after the treatments "leaf wetting" and artificial rain (F = 53.630; p < 0.001), whereas lerp abundance remained roughly constant in the control treatment along the experiment (F = 1.450; p = 0.232). At the end of the experiment, lerp abundance was significantly lower in both the "artificial rain" and "leaf wetting" than in the control treatment. Two days of rainfall simulation were sufficient to decrease more than 50% of the lerp population, with almost 100% of effectiveness after 5 days of experiment. Our results indicate that lerp solubilization and mechanical removal by water are potential tools to the population regulation of G. brimblecombei on E. camaldulensis seedlings.
Resumo:
Gully erosion occurs by the combined action of splash, sheetwash and rill-wash (interrill and rill erosion). These erosion processes have a great capacity for both sediment production and sediment transport. The objectives of this experiment were to evaluate hydrological and sediment transport in a degraded area, severely dissected by gullies; to assess the hydraulic flow characteristics and their aggregate transport capacity; and to measure the initial splash erosion rate. In the study area in Guarapuava, State of Paraná, Brazil (lat 25º 24' S; long 51º24' W; 1034 m asl), the soil was classified as Cambissolo Húmico alumínico, with the following particle-size composition: sand 0.116 kg kg-1; silt 0.180 kg kg-1; and clay 0.704 kg kg-1. The approach of this research was based on microcatchments formed in the ground, to study the hydrological response and sediment transport. A total of eight rill systems were simulated with dry and wet soil. An average rainfall of 33.7 ± 4.0 mm was produced for 35 to 54 min by a rainfall simulator. The equipment was installed, and a trough was placed at the end of the rill to collect sediments and water. During the simulation, the following variables were measured: time to runoff, time to ponding, time of recession, flow velocity, depth, ratio of the initial splash and grain size. The rainsplash of dry topsoil was more than twice as high as under moist conditions (5 g m-2 min-1 and 2 g m-2 min-1, respectively). The characteristics of the flow hydraulics indicate transition from laminar to turbulent flow [Re (Reynolds number) 1000-2000]. In addition, it was observed that a flow velocity of 0.12 m s-1 was the threshold for turbulent flow (Re > 2000), especially at the end of the rainfall simulation. The rill flow tended to be subcritical [Fr (Froude Number) < 1.0]. The variation in hydrological attributes (infiltration and runoff) was lower, while the sediment yield was variable. The erosion in the rill systems was characterized as limited transport, although the degraded area generated an average of 394 g m-2 of sediment in each simulation.
Resumo:
The description of the fate of fertilizer-derived nitrogen (N) in agricultural systems is an essential tool to enhance management practices that maximize nutrient use by crops and minimize losses. Soil erosion causes loss of nutrients such as N, causing negative effects on surface and ground water quality, aside from losses in agricultural productivity by soil depletion. Studies correlating the percentage of fertilizer-derived N (FDN) with soil erosion rates and the factors involved in this process are scarce. The losses of soil and fertilizer-derived N by water erosion in soil under conventional tillage and no tillage under different rainfall intensities were quantified, identifying the intervening factors that increase loss. The experiment was carried out on plots (3.5 × 11 m) with two treatments and three replications, under simulated rainfall. The treatments consisted of soil with and soil without tillage. Three successive rainfalls were applied in intervals of 24 h, at intensities of 30 mm/h, 30 mm/h and 70 mm/h. The applied N fertilizer was isotopically labeled (15N) and incorporated into the soil in a line perpendicular to the plot length. Tillage absence resulted in higher soil losses and higher total nitrogen losses (TN) by erosion induced by the rainfalls. The FDN losses followed another pattern, since FDN contributions were highest from tilled plots, even when soil and TN losses were lowest, i.e., the smaller the amount of eroded sediment, the greater the percentage of FDN associated with these. Rain intensity did not affect the FDN loss, and losses were greatest after less intense rainfalls in both treatments.
Resumo:
The objective of this work was to test methods for pre-harvest sprouting assessment in wheat cultivars. Fourteen wheat cultivars were grown in Londrina and Ponta Grossa municipalities, Paraná state, Brazil. They were sampled at 10 and 17 days after physiological maturity and evaluated using the methods of germination by rainfall simulation (in a greenhouse), in-ear grain sprouting, and grains removed from the ears. The in-ear grain sprouting method allowed the differentiation of cultivars, but showed different resistance levels from the available description of cultivars. The sprouting of grain removed from the ears did not allow a reliable distinction of data on germination in any harvest date or location. The method of rainfall simulation is the most suitable for the assessment of cultivars as to pre-harvest sprouting, regardless of the sampling date and evaluated location.
Resumo:
ABSTRACTThe raw sugarcane harvesting system has changed the dynamics of weed tillage for this crop, changing the predominant weed species and providing a barrier between the herbicide and the soil. Thus, this study has aimed to assess the influence of precipitation and sugarcane straw in the aminocyclopyrachlor and indaziflam herbicides control efficiency for the species Ipomoea trilobaand Euphorbia heterophylla. There were two trials, one for aminocyclopyrachlor and one for the indaziflam, both in the greenhouse at the campus of Faculdade Integrado in the Brazilian city of Campo Mourão, PR. Each experiment consisted of eight treatments with four replications. The treatments consisted of the combination of the presence of straw (10 t ha-1), capillary irrigation and rainfall simulation (20 mm). Assessments of control percentage of I.triloba and E.heterophylla were carried out, as well as the number of plants per pot. The aminocyclopyrachlor and indaziflam herbicides applied directly to the soil were efficient in controlling these species. The 20 mm rainfall simulation or daily irrigation on the straw are indispensable to promote the removal of aminocyclopyrachlor and indaziflam from the straw and provide satisfactory control of I.triloba and E.heterophylla.
Resumo:
The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR) and tortuosity (T) and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim), in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage) soil (NTS) and conventionally tilled (plowing plus double disking) soil (CTS). Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.
Resumo:
The objective of this work was to parameterize, calibrate, and validate a new version of the soybean growth and yield model developed by Sinclair, under natural field conditions in northeastern Amazon. The meteorological data and the values of soybean growth and leaf area were obtained from an agrometeorological experiment carried out in Paragominas, PA, Brazil, from 2006 to 2009. The climatic conditions during the experiment were very distinct, with a slight reduction in rainfall in 2007, due to the El Niño phenomenon. There was a reduction in the leaf area index (LAI) and in biomass production during this year, which was reproduced by the model. The simulation of the LAI had root mean square error (RMSE) of 0.55 to 0.82 m² m-2, from 2006 to 2009. The simulation of soybean yield for independent data showed a RMSE of 198 kg ha-1, i.e., an overestimation of 3%. The model was calibrated and validated for Amazonian climatic conditions, and can contribute positively to the improvement of the simulations of the impacts of land use change in the Amazon region. The modified version of the Sinclair model is able to adequately simulate leaf area formation, total biomass, and soybean yield, under northeastern Amazon climatic conditions.
Resumo:
The Bartlett-Lewis Rectangular Pulse Modified (BLPRM) model simulates the precipitous slide in the hourly and sub-hourly and has six parameters for each of the twelve months of the year. This study aimed to evaluate the behavior of precipitation series in the duration of 15 min, obtained by simulation using the model BLPRM in situations: (a) where the parameters are estimated from a combination of statistics, creating five different sets; (b) suitability of the model to generate rain. To adjust the parameters were used rain gauge records of Pelotas/RS/Brazil, which statistics were estimated - mean, variance, covariance, autocorrelation coefficient of lag 1, the proportion of dry days in the period considered. The results showed that the parameters related to the time of onset of precipitation (λ) and intensities (μx) were the most stable and the most unstable were ν parameter, related to rain duration. The BLPRM model adequately represented the mean, variance, and proportion of the dry period of the series of precipitation lasting 15 min and, the time dependence of the heights of rain, represented autocorrelation coefficient of the first retardation was statistically less simulated series suitability for the duration of 15 min.
Resumo:
INTRODUCTION: Visceral leishmaniasis is a serious public health problem that requires global control strategies, especially with respect to factors that may intervene in reducing the incidence of endemicity. In this work, rainfall density and temperature were correlated with the incidence of human cases in an area endemic for leishmaniasis in São Luis do Maranhão, Northeastern Brazil. METHODS: Notification of human cases by the National Health Foundation/Regional Coordination of Maranhão (FUNASA/COREMA) from 2002 to 2010 was used. Ecological data (mean temperature and rainfall density) were provided by the Meteorological Office of State. RESULTS: A significant association was verified between the number of VL cases and rainfall rate but not in the analysis concerning mean temperatures. CONCLUSIONS: These data suggest that the control actions in visceral leishmaniasis should be performed during rainy season in the State of Maranhão, which is in the first half of the year.
Resumo:
Introduction Our objective was to evaluate the influence of rainfall regime on the population dynamics of Biomphalaria in a potential urban focus of schistosomiasis in Aracaju, Brazil, during 2009-2010. Methods Snails were collected monthly and were counted, measured and identified; the level of infection and fecal contamination at the sampling sites was determined; rainfall data were obtained. Results High levels of fecal contamination were observed, and the abundance of Biomphalaria glabrata increased during the rainy and post-rainy seasons. The snails' size was variable, and infected snails were identified independently of rainfall. Conclusions These results provide evidence of anthropogenic and climate interference in an urban focus of schistosomiasis in the Aracaju metropolitan area.
Resumo:
Rainfall data registered betwe en 1910 and 1979 at Manaus confirm the existence of a dry season between June and November (monthly rainfall: 42-162mm) and a rainy season from December until May (monthly rainfall: 211-300mm). Annual precipitation amounted to 2105mm with about 75% of the rainfall recorded during the rainy season. Rainfall data collected over 12 months at eigth stations in the vicinity of and at Manaus are compared. Annual precipitation was lower in Inundation Regions (1150-2150mm) compared with Dryland Regions (2400-2550mm). Considerable differences are found in rainfall patterns (intensity, frequency and time of rainfall). This is also truefor neighbouring stations, even if data of a 11-year record period are compared. Thus, it is highly recommended that preciptation data for bioecological studies be collected at the study site.
Resumo:
The influence of the large-scale climatic variability dominant modes in the Pacific and in the Atlantic on Amazonian rainfall is investigated. The composite technique of the Amazon precipitation anomalies is used in this work. The basis years for these composites arc those in the period 1960-1998 with occurrences of extremes in the Southern Oscillation (El Niño or La Niña) and the north/south warm (or cold) sea surface temperature (SST) anomalies dipole pattern in the tropical Atlantic. Warm (cold) dipole means positive (negative) anomalies in the tropical North Atlantic and negative (positive) anomalies in the tropical South Atlantic. Austral summer and autumn composites for extremes in the Southern Oscillation (El Niño or La Niña) and independently for north/south dipole pattern (warm or cold) of the SST anomalies in the tropical Atlantic present values (magnitude and sign) consistent with those found in previous works on the relationship between Amazon rainfall variations and the SST anomalies in the tropical Pacific and Atlantic. However, austral summer and autumn composites for the years with simultaneous occurrences of El Niño and warm north/south dipole of the SST anomalies in the tropical Atlantic show negative precipitation anomalies extending eastward over the center-eastern Amazon. This result indicates the important role played by the tropical Atlantic in the Amazon anomalous rainfall distribution.
Resumo:
The TRMM-LBA field campaign was held during the austral summer of 1999 in southwestern Amazonia. Among the major objectives, was the identification and description of the diurnal variability of rainfall in the region, associated with the different rain producing weather systems that occurred during the January-February season. By using a network of 40 digital rain gauges implemented in the state of Rondônia, and together with observations and analyses of circulation and convection, it was possible to identify details of the diurnal cycle of rainfall and the associated rainfall mechanisms. Rainfall episodes were characterized by regimes of "low-level easterly" and "westerly" winds in the context of the large-scale circulation. The westerly regime is related to an enhanced South Atlantic Convergence Zone (SACZ) and an intense and/or wide Low Level Jet (LLJ) east of the Andes, which can extend eastward towards Rondônia, even though some westerly regime episodes also show a LLJ that remains close to the foothill of the Andes. The easterly regime is related to easterly propagating systems (e.g. squall-lines) with possible weakened or less frequent LLJs and a suppressed SACZ. Diurnal variability of rainfall during westerly surface wind regime shows a characteristic maximum at late afternoon followed by a relatively weaker second maximum at early evening (2100 Local Standard Time LST). The easterly regime composite shows an early morning maximum followed by an even stronger maximum in the afternoon.
Resumo:
The distinction between convective and stratiform precipitation profiles around various precipitating systems existent in tropical regions is very important to the global atmospheric circulation, which is extremely sensitive to vertical latent heat distribution. In South America, the convective activity responds to the Intraseasonal Oscillation (IOS). This paper analyzes a disdrometer and a radar profiler data, installed in the Ji-Paraná airport, RO, Brazil, for the field experiment WETAMC/LBA & TRMM/LBA, during January and February of 1999. The microphysical analysis of wind regimes associated with IOS showed a large difference in type, size and microphysical processes of hydrometeor growth in each wind regime: easterly regimes had more turbulence and consequently convective precipitation formation, and westerly regimes had a more stratiform precipitation formation.