5 resultados para RESUSPENSION
em Scielo Saúde Pública - SP
Resumo:
The purpose of this study was to evaluate the influence of variables in a flotation technique for the recovery of Toxocara canis eggs from soil. The trials were done under standardized conditions on one gram of previously sterilized soil samples contaminated with 200 eggs of T. canis. The following variables were evaluated in serial steps: sieving; type of wash; time of stirring; resuspension of sediment; solution flotation. Centrifuge-flotation in sodium nitrate (d = 1.20 g/cm³) was adopted as an initial technique, using Tween 80 (0.2%) and decinormal sodium hydroxide as solutions for washing the samples. Ten tests were done to compare the variables, using counting in triplicate. The sieving of the material reduced significantly the recovery of eggs (p < 0.001) and the number of eggs recovered was higher when the sediment was resuspended (p < 0.05). After standardization, flotation solutions sodium chloride, zinc sulfate, sodium dichromate, magnesium sulfate, and sodium nitrate (d = 1.20g/cm³) were compared. The best results were obtained by using zinc sulfate solution. In conclusion, the chances of recovering T. canis eggs from samples using flotation solutions can be increased by washing of soil twice using distilled water, and resuspension of sediment. On the other hand, the sieving procedure can drastically reduce the number of eggs.
Resumo:
The study was conducted in Puruzinho lake (Humaitá, AM) considering seasonal periods of rainy and dry in way to elucidate the flood pulse importance in the deposition, remobilization and distributions of mercury and organic matter in bottom sediments in the Madeira River Basin (Brazilian Amazon). Bottom sediments and soils samples were analyzed for total mercury and organic matter. Mercury concentrations obtained in bottom sediment were 32.20-146.40 ng g-1 and organic matter values were 3.5 - 18.0%. The main region for accumulation of mercury and organic matter was in the central and deepest lake area In the rainy season there was a greater distribution of Hg and organic matter, mainly controlled by means of income of the Madeira river water during flooding, while the predominant process in the dry season was the remobilization of total Hg due to the resuspension of bottom sediments.
Resumo:
Butyltin compounds were investigated in surface sediments from 17 stations in Todos os Santos Bay. Analytical conditions for organotin determination in marine sediments were optimized for GC with pulsed flame photometric detection. Detection limits were: 5.4 µg kg-1 for TBT; 0.2 µg kg-1 for DBT; and 2.1 µg kg-1 for MBT, using a 610-nm filter. In general, TBT concentrations were low and in the range of
- resuspension events followed by removal of the more soluble DBT and MBT may explain these observations.
Resumo:
This study describes the use of electroporation for transforming Xanthomonas axonopodis pv. citri (Xac), the causal agent of citrus (Citrus spp.) canker. It also evaluates the methodology used for this species under different electrical parameters. The bacterium used in the study (Xac 306) was the same strain used for recent complete sequencing of the organism. The use of a plasmid (pUFR047, gentamycin r) is reported here to be able to replicate in cells of Xac. Following the preparation and resuspension of competent cells of Xac at a density of ~4 x 10(10) cfu/ml, in 10% glycerol, and the addition of the replicative plasmid, an electrical pulse was applied to each treatment. Selection of transformants showed a high efficiency of transformation (1.1 x 10(6) transformants/mug DNA), which indicates an effective, and inverse, combination between electrical resistance (50 W) and capacitance (50 µF) for this species, with an electrical field strength of 12.5 kV.cm-1 and 2.7-ms pulse duration. Besides the description of a method for electroporation of Xac 306, this study provides additional information for the use of the technique on studies for production of mutants of this species.
Resumo:
Abstract: Platelet-rich plasma (PRP) is a product easy and inxpesnsive, and stands out to for its growth factors in tissue repair. To obtain PRP, centrifugation of whole blood is made with specific time and gravitational forces. Thus, the present work aimed to study a method of double centrifugation to obtain PRP in order to evaluate the effective increase of platelet concentration in the final product, the preparation of PRP gel, and to optimize preparation time of the final sample. Fifteen female White New Zealand rabbits underwent blood sampling for the preparation of PRP. Samples were separated in two sterile tubes containing sodium citrate. Tubes were submitted to the double centrifugation protocol, with lid closed and 1600 revolutions per minute (rpm) for 10 minutes, resulting in the separation of red blood cells, plasma with platelets and leucocytes. After were opened and plasma was pipetted and transferred into another sterile tube. Plasma was centrifuged again at 2000rpm for 10 minutes; as a result it was split into two parts: on the top, consisting of platelet-poor plasma (PPP) and at the bottom of the platelet button. Part of the PPP was discarded so that only 1ml remained in the tube along with the platelet button. This material was gently agitated to promote platelets resuspension and activated when added 0.3ml of calcium gluconate, resulting in PRP gel. Double centrifugation protocol was able to make platelet concentration 3 times higher in relation to the initial blood sample. The volume of calcium gluconate used for platelet activation was 0.3ml, and was sufficient to coagulate the sample. Coagulation time ranged from 8 to 20 minutes, with an average of 17.6 minutes. Therefore, time of blood centrifugation until to obtain PRP gel took only 40 minutes. It was concluded that PRP was successfully obtained by double centrifugation protocol, which is able to increase the platelet concentration in the sample compared with whole blood, allowing its use in surgical procedures. Furthermore, the preparation time is appropriate to obtain PRP in just 40 minutes, and calcium gluconate is able to promote the activation of platelets.