16 resultados para RARE EARTH-HEDTA-SERINE TERNARY
em Scielo Saúde Pública - SP
Resumo:
Fossils of wood, bone and teeth found along the Upper Purus River οf Amazonia. were studied using conventional microscopy and scanning electron microscopy. Mass spectometry was also used to investigate minor and trace element signatures of bone samples.The microsopy studies showed that there was little alteration of original textures. In the fossil wood samples, identified In thin section as tropical hardwood trees, the replacement of the original material with siderite suggests that fossilization occured in shallow sediments in which interstitial waters were saturated with respect to iron carbenate. In samples of both fossilized bone and wood, precipitation of secondary iron phases was commonly observed in cracks and voids. Other secondary phases Included silica, iron oxides, manganese carbonate. The intimate assοciation οf these secondary phases with the original biological structures could be evidence for a microbiological role in the formation of these phases. The similarity in rare earth element (REE) signatures for 2 fossil bone samples from different modern locations indicates their having shared similar diagenetic histories.The virtually complete preservation of original textures suggests that microscοpic studies could be useful in classifying fossil and even in identifying original materials. Rare carth signatures in fossilized bone may reflect ground water compositions at the time of fossilization.
Resumo:
Rare earth elements supported in zeolites are the most important catalysts in the fluid cracking of petroleum. The solid state ion exchange of Eu3+ in Y zeolite was investigated. First of all, the hydrated EuCl3 was well mixed in a ball mill and was then heated at 300ºC for different times. The quantitative determination of Eu3+ showed that the degree of ion exchange depends on the reaction time at constant temperature, being ~95% in 4 h. The X-ray study showed that the crystallinity of the zeolite is little affected by the exchange procedure. The study of spectroscopic properties of Eu3+, emission spectra and lifetime, give information about the migration and position of the ion in the zeolite cages.
Resumo:
Fabrication of new optical devices based upon the incorporation of rare earth ions via sol-gel methods depends on elimination of dopant ion clusters and residual hydroxyl groups from the final material. The optical absorption and/or luminescence properties of luminescent rare earth ions are influenced by the local bonding environment and the distribution of the rare-earth dopants in the matrix. Typically, dopants are incorporated into gel via dissolution of soluble species into the initial precursor sol. In this work, Eu3+ is used as optical probe, to assess changes in the local environment. Results of emission, excitation, fluorescence line narrowing and lifetimes studies of Eu3+-doped gels derived from Si(OCH3)4 and fluorinated/chelate Eu3+ precursors are presented. The precursors used in the sol-gel synthesis were: tris (6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate) Eu(III), Eu (III) trifluoromethanesulfonate, Eu(III) acetylacetonate hydrate, Eu (III) trifluoroacetate trihidrate, tris (2,2,6,6-tetramethyl-3,5- heptanedionate) Eu(III) and Eu(NO3)3.6H2O. The results were interpreted in terms of the evolution of the Eu3+ fluorescence in systems varying from solution to the gels densified to 800ºC. The lifetimes studies indicate that the fluorinated precursors are effective at reducing the water content in densified gels.
Resumo:
Optical spectroscopy in the 400-1700nm wavelength range was performed on rare earth doped heavy metal fluoride (HMF) glasses. In the present work In-based fluoride glasses with a fixed 2 mol % YbF3 concentration and an ErF3 content ranging from 0 to 8 mol % were investigated. According to the experimental spectroscopic data a dependence in the absorption coefficient, the photoluminescence intensity and in the radiative lifetime could be verified as a function of the ErF3 content. In addition, at liquid nitrogen temperature, light emission corresponding to indirect transitions in the infrared energy range could be easily observed as a consequence of the low phonon frequency characteristic of this class of fluoride glasses. For all the studied compositions, strong upconversion to the green and red light was observed by pumping these Er3+- and Yb3+-doped HMF glasses with 790 and 980nm photon sources.
Contribuição ao estudo de uma metodologia alternativa para obtenção de dioxissulfeto de terras raras
Resumo:
In the last decade, many method has been developed to obtain oxysufides. However, theses materials were obtained by reaction involved gaseous toxics, CO, CS2, H2S and S. In the present work, the synthesis of lanthanum oxysufides actived by europium (III) through an alternative method has been made. This method involve the rare earth sulfate reduction under an atmosphere of argon contained 10% hydrogen using the thermogravimetric technique. The results showed the formation of the phase TR2O2S (TR = La and Eu) at temperatures which depend upon the heating rate, respectively 650 - 830ºC at 5ºC min-1 and 680 - 800ºC at 10ºC min-1. The oxysufides obtained are characterized by infrared spectroscopy. The method developed is more economic than the usual industrial methods and the environmental problems during the synthesis are also better controled.
Resumo:
In this article we review some of the basic aspects of rare earth spectroscopy applied to vitreous materials. The characteristics of the intra-atomic free ion and ligand field interactions, as well as the formalisms of the forced electric dipole and dynamic coupling mechanisms of 4f-4f intensities, are outlined. The contribution of the later mechanism to the 4f-4f intensities is critically discussed, a point that has been commonly overlooked in the literature of rare earth doped glasses. The observed correlation between the empirical intensity parameter W2 and the covalence of the ion first coordination shell is discussed accordingly to the theoretical predictions.
Resumo:
Sand samples collected from two sampling sites on Guarapari and Iriri beaches, state of Espírito Santo, Brazil, were studied in an attempt to better describe their chemical and mineralogical compositions and radioactive behaviors. The sands were found to contain about 6 (Guarapari) and 2 dag kg-1 (Iriri) of rare earth and thorium that, if allocated to the monazite-(Ce) structure, lead to the averaged formulae Ce3+0,494Gd3+0,012La3+0,209Nd3+0,177Pr3+0,040Sm3+0,024Th4+0,033 (PO4) and Ce3+0,474La3+0,227Nd3+0,190Pr3+0,044Sm3+0,032Th4+0,024 (PO4). From Mössbauer spectroscopy data, the magnetic fractions of these sands were found to contain stoichiometric hematite (47.4 dag kg-1, from Guarapari, and 25.1 dag kg-1, from Iriri) and magnetite (44.1 and 58.8 dag kg-1). The specific alpha and beta radiation activities were also measured for both samples.
Resumo:
Pb/Ti, Sn and Mg-based nanocomposite materials were prepared by the high-energy mechanical milling of commercial powders. The surface of these ceramic compounds was strongly influenced by the doping, diameter of the milling spheres and time of the mechanical milling (amorphization process). Such milling leads to the formation of nanocrystalline materials. The mechanical processing parameters of these compounds were investigated through Brunauer, Emmett and Teller isotherms, wide angle X-ray diffraction, transmission electron microscopy and CO2 adsorption.
Resumo:
Rare earth ion doped solid state materials are the most important active media of near-infrared and visible lasers and other photonic devices. In these ions, the occurrence of Excited State Absorptions (ESA), from long lived electronic levels, is commonplace. Since ESA can deeply affect the efficiencies of the rare earth emissions, evaluation of these transitions cross sections is of greatest importance in predicting the potential applications of a given material. In this paper a detailed description of the pump-probe technique for ESA measurements is presented, with a review of several examples of applications in Nd3+, Tm3+ and Er3+ doped materials.
Resumo:
[RE(czb)3(H2O)2] complexes (where RE = Eu3+, Tb3+, Gd3+; and czb = 4-(9H-carbazol-9-yl)benzoato) have been synthesized and characterized. The Gd3+ complex was used to determine the triplet state energy of the czb ligand. Photoluminescence measurements of the complexes have been carried out under UV excitation. The Tb3+ complex exhibited a strong green luminescence indicating an efficient antenna effect, whereas the Eu3+ complex showed low red luminescence and the Gd3+ complex a blue-green luminescence from the ligand. The luminescence lifetimes and quantum yields have also been measured for the evaluation of the spectroscopic behavior of the complexes.
Resumo:
This work outlines the historic development of the concept and main theories of energy transfer, as well as the principal experiments carried out to confirm or refute the proposed theories. Energy transfer in coordination compounds is also discussed with a focus on rare earth systems.
Resumo:
Hydrated compounds prepared in aqueous solution by reaction between amidosulfonic acid [H3NSO3] and suspensions of rare earth hydroxycarbonates [Ln2(OH)x(CO3)y.zH2O] were characterized by elemental analysis (% Ln, % N and % H), infrared spectroscopy (FTIR) and thermogravimetry (TG). The compounds presented the stoichiometry Ln(NH2SO3)3.xH2O (where x = 1, 5, 2.0 or 3.0). The IR spectra showed absorptions characteristic of H2O molecules and NH2SO3 groups. Degree of hydration, thermal decomposition steps and formation of stable intermediates of the type [Ln2(SO4)3] and (Ln2O2SO4), besides formation of their oxides, was determined by thermogravimetry.
Resumo:
The marine environment is certainly one of the most complex systems to study, not only because of the challenges posed by the nature of the waters, but especially due to the interactions of physical, chemical and biological processes that control the cycles of the elements. Together with analytical chemists, oceanographers have been making a great effort in the advancement of knowledge of the distribution patterns of trace elements and processes that determine their biogeochemical cycles and influences on the climate of the planet. The international academic community is now in prime position to perform the first study on a global scale for observation of trace elements and their isotopes in the marine environment (GEOTRACES) and to evaluate the effects of major global changes associated with the influences of megacities distributed around the globe. This action can only be performed due to the development of highly sensitive detection methods and the use of clean sampling and handling techniques, together with a joint international program working toward the clear objective of expanding the frontiers of the biogeochemistry of the oceans and related topics, including climate change issues and ocean acidification associated with alterations in the carbon cycle. It is expected that the oceanographic data produced this coming decade will allow a better understanding of biogeochemical cycles, and especially the assessment of changes in trace elements and contaminants in the oceans due to anthropogenic influences, as well as its effects on ecosystems and climate. Computational models are to be constructed to simulate the conditions and processes of the modern oceans and to allow predictions. The environmental changes arising from human activity since the 18th century (also called the Anthropocene) have made the Earth System even more complex. Anthropogenic activities have altered both terrestrial and marine ecosystems, and the legacy of these impacts in the oceans include: a) pollution of the marine environment by solid waste, including plastics; b) pollution by chemical and medical (including those for veterinary use) substances such as hormones, antibiotics, legal and illegal drugs, leading to possible endocrine disruption of marine organisms; and c) ocean acidification, the collateral effect of anthropogenic emissions of CO2 into the atmosphere, irreversible in the human life time scale. Unfortunately, the anthropogenic alteration of the hydrosphere due to inputs of plastics, metal, hydrocarbons, contaminants of emerging concern and even with formerly "exotic" trace elements, such us rare earth elements is likely to accelerate in the near future. These emerging contaminants would likely soon present difficulties for studies in pristine environments. All this knowledge brings with it a great responsibility: helping to envisage viable adaptation and mitigation solutions to the problems identified. The greatest challenge faced by Brazil is currently to create a framework project to develop education, science and technology applied to oceanography and related areas. This framework would strengthen the present working groups and enhance capacity building, allowing a broader Brazilian participation in joint international actions and scientific programs. Recently, the establishment of the National Institutes of Science and Technology (INCTs) for marine science, and the creation of the National Institute of Oceanographic and Hydrological Research represent an exemplary start. However, the participation of the Brazilian academic community in the latest assaults on the frontier of chemical oceanography is extremely limited, largely due to: i. absence of physical infrastructure for the preparation and processing of field samples at ultra-trace level; ii. limited access to oceanographic cruises, due to the small number of Brazilian vessels and/or absence of "clean" laboratories on board; iii. restricted international cooperation; iv. limited analytical capacity of Brazilian institutions for the analysis of trace elements in seawater; v. high cost of ultrapure reagents associated with processing a large number of samples, and vi. lack of qualified technical staff. Advances in knowledge, analytic capabilities and the increasing availability of analytical resources available today offer favorable conditions for chemical oceanography to grow. The Brazilian academic community is maturing and willing to play a role in strengthening the marine science research programs by connecting them with educational and technological initiatives in order to preserve the oceans and to promote the development of society.
Resumo:
A hydrometallurgical method for the recovery of rare earth metals, cobalt, nickel, iron, and manganese from the negative electrodes of spent Ni - MH mobile phone batteries was developed. The rare earth compounds were obtained by chemical precipitation at pH 1.5, with sodium cerium sulfate (NaCe(SO4)2.H2O) and lanthanum sulfate (La2(SO4)3.H2O) as the major recovered components. Iron was recovered as Fe(OH)3 and FeO. Manganese was obtained as Mn3O4.The recovered Ni(OH)2 and Co(OH)2 were subsequently used to synthesize LiCoO2, LiNiO2 and CoO, for use as cathodes in ion-Li batteries. The anodes and recycled materials were characterized by analytical techniques.
Resumo:
This contribution introduces a brief discussion about the properties and applications of the rare earth elements, with a focus on their current status in Brazil. The general chemical properties, main applications and historical background of the chemistry of these elements are presented, and special attention is devoted to the development of the exploitation and both academic and industrial activities involving rare earths in Brazil. A discussion of the current world scenario ensues and some perspectives regarding the prospection, market and government policy concerning the rare earth elements in Brazil are given.