14 resultados para Récepteur métabotropique du GABA (GABA(B))

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dipyrone administered intravenously (iv) or intracerebroventricularly (icv) delays gastric emptying (GE) in rats. Gamma-aminobutyric acid (GABA) is the most potent inhibitory neurotransmitter of the central nervous system. The objective of the present study was to determine the effect of icv baclofen, a GABA B receptor agonist, on delayed GE induced by dipyrone. Adult male Wistar rats received a saline test meal containing phenol red as a marker. GE was indirectly evaluated by determining the percent of gastric retention (%GR) of the meal 10 min after orogastric administration. In the first experiment, the animals were injected iv with vehicle (Civ) or 80 mg/kg (240 µmol/kg) dipyrone (Dp iv), followed by icv injection of 10 µl vehicle (bac0), or 0.5 (bac0.5), 1 (bac1) or 2 µg (bac2) baclofen. In the second experiment, the animals were injected icv with 5 µl vehicle (Cicv) or an equal volume of a solution containing 4 µmol (1333.2 µg) dipyrone (Dp icv), followed by 5 µl vehicle (bac0) or 1 µg baclofen (bac1). GE was determined 10 min after icv injection. There was no significant difference between control animals from one experiment to another concerning GR values. Baclofen at the doses of 1 and 2 µg significantly reduced mean %GR induced by iv dipyrone (Dp iv bac1 = 35.9% and Dp iv bac2 = 26.9% vs Dp iv bac0 = 51.8%). Similarly, baclofen significantly reduced the effect of dipyrone injected icv (mean %GR: Dp icv bac1 = 30.4% vs Dp icv bac0 = 54.2%). The present results suggest that dipyrone induces delayed GE through a route in the central nervous system that is blocked by the activation of GABA B receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the effects of bilateral injections of the GABA receptor agonists muscimol (GABA A) and baclofen (GABA B) into the nucleus tractus solitarius (NTS) on the bradycardia and hypotension induced by iv serotonin injections (5-HT, 2 µg/rat) in awake male Holtzman rats. 5-HT was injected in rats with stainless steel cannulas implanted bilaterally in the NTS, before and 5, 15, and 60 min after bilateral injections of muscimol or baclofen into the NTS. The responses to 5-HT were tested before and after the injection of atropine methyl bromide. Muscimol (50 pmol/50 nl, N = 8) into the NTS increased basal mean arterial pressure (MAP) from 115 ± 4 to 144 ± 6 mmHg, did not change basal heart rate (HR) and reduced the bradycardia (-40 ± 14 and -73 ± 26 bpm at 5 and 15 min, respectively, vs -180 ± 20 bpm for the control) and hypotension (-11 ± 4 and -14 ± 4 mmHg, vs -40 ± 9 mmHg for the control) elicited by 5-HT. Baclofen (12.5 pmol/50 nl, N = 7) into the NTS also increased basal MAP, but did not change basal HR, bradycardia or hypotension in response to 5-HT injections. Atropine methyl bromide (1 mg/kg body weight) injected iv reduced the bradycardic and hypotensive responses to 5-HT injections. The stimulation of GABA A receptors in the NTS of awake rats elicits a significant increase in basal MAP and decreases the cardiac Bezold-Jarisch reflex responses to iv 5-HT injections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the acute effects of centrally acting antihypertensive drugs on the microcirculation of pentobarbital-anesthetized spontaneously hypertensive rats (SHR). The effects of the sympatho-inhibitory agents clonidine and rilmenidine, known to activate both alpha2-adrenoceptors and nonadrenergic I1-imidazoline binding sites (I1BS) in the central nervous system, were compared to those of dicyclopropylmethyl-(4,5-dimethyl-4,5-dihydro-3H -pyrrol-2-yl)-amine hydrochloride (LNP 509), which selectively binds to the I1BS. Terminal mesenteric arterioles were observed by intravital microscopy. Activation of the central sympathetic system with L-glutamate (125 µg, ic) induced marked vasoconstriction of the mesenteric microcirculation (27 ± 3%; N = 6, P < 0.05). In contrast, the marked hypotensive and bradycardic effects elicited by intracisternal injection of clonidine (1 µg), rilmenidine (7 µg) and LNP 509 (60 µg) were accompanied by significant increases in arteriolar diameter (12 ± 1, 25 ± 10 and 21 ± 4%, respectively; N = 6, P < 0.05). The vasodilating effects of rilmenidine and LNP 509 were two-fold higher than those of clonidine, although they induced an identical hypotensive effect. Central sympathetic inhibition elicited by baclofen (1 µg, ic), a GABA B receptor agonist, also resulted in vasodilation of the SHR microvessels. The acute administration of clonidine, rilmenidine and LNP 509 also induced a significant decrease of cardiac output, whereas a decrease in systemic vascular resistance was observed only after rilmenidine and LNP 509. We conclude that the normalization of blood pressure in SHR induced by centrally acting antihypertensive agents is paralleled by important vasodilation of the mesenteric microcirculation. This effect is more pronounced with substances acting preferentially (rilmenidine) or exclusively (LNP 509) upon I1BS than with those presenting important alpha2-adrenergic activity (clonidine).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antipyrine (At) and dipyrone (Dp) delay gastric emptying (GE) in rats. The objective of the present study was to assess the effects of intravenous (iv) and intracerebroventricular (icv) administration of At and Dp on the GE of liquid by rats. GE was assessed in male Wistar rats (5-10 in each group) 10 min after the icv or iv drug injection by measuring percent gastric retention (%GR) of a saline test meal labeled with phenol red 10 min after administration by gavage. The At iv group was significantly higher (64.4 ± 2.6%) compared to control (33.4 ± 1.5%) but did not differ from the Dp group (54.3 ± 3.8%). After icv administration of At, %GR (34.2 ± 2%) did not differ from control (32.6 ± 1.9%), but was significantly higher after Dp (54.5 ± 2.3%). Subdiaphragmatic vagotomy significantly reduced %GR in the At group (30.2 ± 0.7%) compared to the sham group, but was significantly higher than in the controls (23.0 ± 0.5%). In the animals treated with At iv, baclofen significantly reduced %GR (28.3 ± 2.4%) compared to vehicle-treated animals (55.2 ± 3.2%). The same occurred in the animals treated iv with vehicle and icv with baclofen. Although vagotomy and baclofen reduced %GR per se, the reduction was twice more marked in the animals treated with At. The results suggest that At administered iv, but not icv, delays GE of liquid in rats with the participation, at least in part, of the vagus nerve and that this phenomenon is blocked by the activation of GABA B receptors in the central nervous system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dipyrone (Dp) delays gastric emptying (GE) in rats. There is no information about whether 4-aminoantipyrine (AA), one of its metabolites, has the same effect. The objectives of the present study were to assess the effects of AA and Dp on GE when administered intravenously (iv) and intracerebroventricularly (icv) (240 µmol/kg and 4 µmol/animal, respectively) and on gastric compliance when administered iv (240 µmol/kg). GE was determined in male Wistar rats weighing 250-300 g (5-10 per group) after icv or iv injection of the drug by measuring percent gastric retention (GR) of a saline meal labeled with phenol red 10 min after administration by gavage. Gastric compliance was estimated in anesthetized rats (10-11 per group), with the construction of volume-pressure curves during intragastric infusion of a saline meal. Compliance was significantly greater in animals receiving Dp (mean ± SEM = 0.26 ± 0.009 mL/mmHg) and AA (0.24 ± 0.012 mL/mmHg) than in controls (0.19 ± 0.009 mL/mmHg). AA and Dp administered iv significantly increased GR (64.4 ± 2.5 and 54.3 ± 3.8%, respectively) compared to control (34 ± 2.2%), a phenomenon observed only with Dp after icv administration. Subdiaphragmatic vagotomy reduced the effect of AA (GR = 31.4 ± 1.5%) compared to sham-treated animals. Baclofen, a GABA B receptor agonist, administered icv significantly reduced the effect of AA (GR = 28.1 ± 1.3%). We conclude that Dp and AA increased gastric compliance and AA delayed GE, with the participation of the vagus nerve, through a pathway that does not involve a direct action of the drug on the central nervous system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The involvement of GABA-A receptors in the control of nociception was studied using the tail-flick test in rats. Non-hypnotic doses of the barbiturates phenobarbital (5-50 mg/kg), pentobarbital (17-33 mg/kg), and thiopental (7.5-30 mg/kg), of the benzodiazepine midazolam (10 mg/kg) or of ethanol (0.4-1.6 g/kg) administered by the systemic route reduced the latency for the tail-flick response, thus inducing a 'hyperalgesic' state in the animals. In contrast, non-convulsant doses of the GABA-A antagonist picrotoxin (0.12-1.0 mg/kg) administered systemically induced an increase in the latency for the tail-flick response, therefore characterizing an 'antinociceptive' state. Previous picrotoxin (0.12 mg/kg) treatment abolished the hyperalgesic state induced by effective doses of the barbiturates, midazolam or ethanol. Since phenobarbital, midazolam and ethanol reproduced the described hyperalgesic effect of GABA-A-specific agonists (muscimol, THIP), which is specifically antagonized by the GABA-A antagonist picrotoxin, our results suggest that GABA-A receptors are tonically involved in the modulation of nociception in the rat central nervous system

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of the present study was to determine if phenobarbital affects the nociception threshold. Systemic (1-20 mg/kg) phenobarbital administration dose dependently induced hyperalgesia in the tail-flick, hot-plate and formalin tests in rats and in the abdominal constriction test in mice. Formalin and abdominal constriction tests were the most sensitive procedures for the detection of hyperalgesia in response to phenobarbital compared with the tail-flick and hot-plate tests. The hyperalgesia induced by systemic phenobarbital was blocked by previous administration of 1 mg/kg ip picrotoxin or either 1-2 mg/kg sc or 10 ng icv bicuculline. Intracerebroventricular phenobarbital administration (5 µg) induced hyperalgesia in the tail-flick test. In contrast, intrathecal phenobarbital administration (5 µg) induced antinociception and blocked systemic-induced hyperalgesia in this test. We suggest that phenobarbital may mediate hyperalgesia through GABA-A receptors at supraspinal levels and antinociception through the same kind of receptors at spinal levels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The rostral ventrolateral medulla (RVLM) contains neurons involved in tonic and reflex control of arterial pressure. We describe the effects of gamma-aminobutyric acid (GABA) and anesthetics injected into the RVLM of conscious and urethane (1.2 g/kg, iv) anesthetized Wistar rats (300-350 g). In conscious rats, bilateral microinjection of GABA (50 nmol/200 nl) induced a small but significant decrease in blood pressure (from 130 ± 3.6 to 110 ± 5.6 mmHg, N = 7). A similar response was observed with sodium pentobarbital microinjection (24 nmol/200 nl). However, in the same animals, the fall in blood pressure induced by GABA (from 121 ± 8.9 to 76 ± 8.8 mmHg, N = 7) or pentobarbital (from 118 ± 4.5 to 57 ± 11.3 mmHg, N = 6) was significantly increased after urethane anesthesia. In contrast, there was no difference between conscious (from 117 ± 4.1 to 92 ± 5.9 mmHg, N = 7) and anesthetized rats (from 123 ± 6.9 to 87 ± 8.7 mmHg, N = 7) when lidocaine (34 nmol/200 nl) was microinjected into the RVLM. The heart rate variations were not consistent and only eventually reached significance in conscious or anesthetized rats. The right position of pipettes was confirmed by histology and glutamate microinjection into the RVLM. These findings suggest that in conscious animals the RVLM, in association with the other sympathetic premotor neurons, is responsible for the maintenance of sympathetic vasomotor tone during bilateral RVLM inhibition. Activity of one or more of these premotor neurons outside the RVLM can compensate for the effects of RVLM inhibition. In addition, the effects of lidocaine suggest that fibers passing through the RVLM are involved in the maintenance of blood pressure in conscious animals during RVLM inhibition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Findings by our group have shown that the dorsolateral telencephalon of Gymnotus carapo sends efferents to the mesencephalic torus semicircularis dorsalis (TSd) and that presumably this connection is involved in the changes in electric organ discharge (EOD) and in skeletomotor responses observed following microinjections of GABA A antagonist bicuculline into this telencephalic region. Other studies have implicated the TSd or its mammalian homologue, the inferior colliculus, in defensive responses. In the present study, we explore the possible involvement of the TSd and of the GABA-ergic system in the modulation of the electric and skeletomotor displays. For this purpose, different doses of bicuculline (0.98, 0.49, 0.245, and 0.015 mM) and muscimol (15.35 mM) were microinjected (0.1 µL) in the TSd of the awake G. carapo. Microinjection of bicuculline induced dose-dependent interruptions of EOD and increased skeletomotor activity resembling defense displays. The effects of the two highest doses showed maximum values at 5 min (4.3 ± 2.7 and 3.8 ± 2.0 Hz, P < 0.05) and persisted until 10 min (11 ± 5.7 and 8.7 ± 5.2 Hz, P < 0.05). Microinjections of muscimol were ineffective. During the interruptions of EOD, the novelty response (increased frequency in response to sensory novelties) induced by an electric stimulus delivered by a pair of electrodes placed in the water of the experimental cuvette was reduced or abolished. These data suggest that the GABA-ergic mechanisms of the TSd inhibit the neural substrate of the defense reaction at this midbrain level.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated the involvement of GABAergic mechanisms of the central amygdaloid nucleus (CeA) in unanesthetized rats subjected to acute isotonic or hypertonic blood volume expansion (BVE). Male Wistar rats bearing cannulas unilaterally implanted in the CeA were treated with vehicle, muscimol (0.2 nmol/0.2 µL) or bicuculline (1.6 nmol/0.2 µL) in the CeA, followed by isotonic or hypertonic BVE (0.15 or 0.3 M NaCl, 2 mL/100 g body weight over 1 min). The vehicle-treated group showed an increase in sodium excretion, urinary volume, plasma oxytocin (OT), and atrial natriuretic peptide (ANP) levels compared to control rats. Muscimol reduced the effects of BVE on sodium excretion (isotonic: 2.4 ± 0.3 vs vehicle: 4.8 ± 0.2 and hypertonic: 4.0 ± 0.7 vs vehicle: 8.7 ± 0.6 µEq·100 g-1·40 min-1); urinary volume after hypertonic BVE (83.8 ± 10 vs vehicle: 255.6 ± 16.5 µL·100 g-1·40 min-1); plasma OT levels (isotonic: 15.3 ± 0.6 vs vehicle: 19.3 ± 1 and hypertonic: 26.5 ± 2.6 vs vehicle: 48 ± 3 pg/mL), and ANP levels (isotonic: 97 ± 12.8 vs vehicle: 258.3 ± 28.1 and hypertonic: 160 ± 14.6 vs vehicle: 318 ± 16.3 pg/mL). Bicuculline reduced the effects of isotonic or hypertonic BVE on urinary volume and ANP levels compared to vehicle-treated rats. However, bicuculline enhanced the effects of hypertonic BVE on plasma OT levels. These data suggest that CeA GABAergic mechanisms are involved in the control of ANP and OT secretion, as well as in sodium and water excretion in response to isotonic or hypertonic blood volume expansion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electrical stimulation has been used for more than 100 years in neuroscientific and biomedical research as a powerful tool for controlled perturbations of neural activity. Despite quickly driving neuronal activity, this technique presents some important limitations, such as the impossibility to activate or deactivate specific neuronal populations within a single stimulation site. This problem can be avoided by pharmacological methods based on the administration of receptor ligands able to cause specific changes in neuronal activity. However, intracerebral injections of neuroactive molecules inherently confound the dynamics of drug diffusion with receptor activation. Caged compounds have been proposed to circumvent this problem, for spatially and temporally controlled release of molecules. Caged compounds consist of a protecting group and a ligand made inactive by the bond between the two parts. By breaking this bond with light of an appropriate wavelength, the ligand recovers its activity within milliseconds. To test these compounds in vivo, we recorded local field potentials (LFPs) from the cerebral cortex of anesthetized female mice (CF1, 60-70 days, 20-30 g) before and after infusion with caged γ-amino-butyric-acid (GABA). After 30 min, we irradiated the cortical surface with pulses of blue light in order to photorelease the caged GABA and measure its effect on global brain activity. Laser pulses significantly and consistently decreased LFP power in four different frequency bands with a precision of few milliseconds (P < 0.000001); however, the inhibitory effects lasted several minutes (P < 0.0043). The technical difficulties and limitations of neurotransmitter photorelease are presented, and perspectives for future in vivo applications of the method are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated the GABA-induced inactivation of V2 neurons and terminals on the receptive field properties of this area in an anesthetized and paralyzedCebus apella monkey. Extracellular single-unit activity was recorded using tungsten microelectrodes in a monkey before and after pressure-injection of a 0.25 or 0.5 M GABA solution. The visual stimulus consisted of a bar moving in 8 possible directions. In total, 24 V2 neurons were studied before and after blocker injections in 4 experimental sessions following GABA injection into area V2. A group of 10 neurons were studied over a short period. An additional 6 neurons were investigated over a long period after the GABA injection. A third group of 8 neurons were studied over a very long period. Overall, these 24 neurons displayed an early (1-20 min) significant general decrease in excitability with concomitant changes in orientation or direction selectivity. GABA inactivation in area V2 produced robust inhibition in 80% and a significant change in directional selectivity in 60% of the neurons examined. These GABA projections are capable of modulating not only levels of spontaneous and driven activity of V2 neurons but also receptive field properties such as direction selectivity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Germinated grains have been known as sources of Gamma-aminobutyric acid (GABA) that provide beneficial effects for human health. This study was aimed to investigate GABA production, dietary fiber, antioxidant activity, and the effect of cooking on GABA loss in germinated legumes and sesame. The highest GABA content was found in germinated mung bean, (0.8068 g kg-1, 24 h incubation) followed by germinated soybean, germinated black bean and soaked sesame. Beside GABA, dietary fiber content also increased in all grains during germination where the insoluble dietary fiber fractions were always found in higher proportions to soluble dietary fiber fractions. Our results also confirmed that germinated mung bean is a rich source of GABA and dietary fibers. Microwave cooking resulted in the smallest loss of GABA in mung bean and sesame, while steaming led to the least GABA content loss in soybean and black bean. Therefore microwave cooking and steaming are the most recommended cooking processes to preserve GABA in germinated legumes and sesame.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In rats pre-but not post-training ip administration of either flumazenil, a central benzodiazepine (BSD) receptor antagonist, or of n-butyl-B-carboline-carboxylate (BCCB), an inverse agonist, enhanced retention of inhibitory avoidance learning. Flumazenil vlocked the enhancing effect of BCCB, and the inhibitory effect of the BZD agonists clonazepam and diazepam also given pre-training. Post-training administration of these drugs had no effects. The peripheral BZD receptor agonist/chloride channel blocker Ro5-4864 had no effect on the inhibitory avoidance task when given ip prior to training, buth it caused enhancement when given immediately post-training either ip or icv. This effect was blocked by PK11195, a competitive antagonist of Ro5-4864. These results suggest that ther is an endogenous mechanism mediated by BZD agonists, which is sensitive to inverse agonists and that normally down-regulates the formation of memories through a mechanism involving GABA-A receptors and the corresponding chloride channels. The most likely agonists for the endogenous mechanism suggested are the diazepam-like BZDs found in brain whose origin is possibly alimentary. Levels of these BZDs in the cortex were found to sharply decrease after inhibitory acoidance training or mere exposure to the training apparatus.