254 resultados para Quantitative real-time polymerase chain reaction (qRT-PCR)
em Scielo Saúde Pública - SP
Resumo:
This study reports the first genetic characterisation of Cryptosporidium isolates in Brazil using real-time polymerase chain reaction (RT-PCR). A total of 1,197 faecal specimens from children and 10 specimens from human immunodeficiency virus-infected patients were collected between 1999-2010 and screened using microscopy. Forty-eight Cryptosporidium oocyst-positive isolates were identified and analysed using a generic TaqMan assay targeting the 18S rRNA to detect Cryptosporidium species and two other TaqMan assays to identify Cryptosporidium hominis and Cryptosporidium parvum. The 18S rRNA assay detected Cryptosporidium species in all 48 of the stool specimens. The C. parvum TaqMan assay correctly identified five/48 stool samples, while 37/48 stool specimens were correctly amplified in the C. hominis TaqMan assay. The results obtained in this study support previous findings showing that C. hominis infections are more prevalent than C. parvum infections in Brazil and they demonstrate that the TaqMan RT-PCR procedure is a simple, fast and valuable tool for the detection and differentiation of Cryptosporidium species.
Resumo:
ELISA in situ can be used to titrate hepatitis A virus (HAV) particles and real-time polymerase chain reaction (RT-PCR) has been shown to be a fast method to quantify the HAV genome. Precise quantification of viral concentration is necessary to distinguish between infectious and non-infectious particles. The purpose of this study was to compare cell culture and RT-PCR quantification results and determine whether HAV genome quantification can be correlated with infectivity. For this purpose, three stocks of undiluted, five-fold diluted and 10-fold diluted HAV were prepared to inoculate cells in a 96-well plate. Monolayers were then incubated for seven, 10 and 14 days and the correlation between the ELISA in situ and RT-PCR results was evaluated. At 10 days post-incubation, the highest viral load was observed in all stocks of HAV via RT-PCR (10(5) copies/mL) (p = 0.0002), while ELISA revealed the highest quantity of particles after 14 days (optical density = 0.24, p < 0.001). At seven days post-infection, there was a significant statistical correlation between the results of the two methods, indicating equivalents titres of particles and HAV genome during this period of infection. The results reported here indicate that the duration of growth of HAV in cell culture must be taken into account to correlate genome quantification with infectivity.
Resumo:
We evaluated the use of a newly described sodC-based real-time-polymerase chain reaction (RT-PCR) assay for detecting Neisseria meningitidis in normally sterile sites, such as cerebrospinal fluid and serum. The sodC-based RT-PCR assay has an advantage over ctrA for detecting nongroupable N. meningitidis isolates, which are commonly present in asymptomatic pharyngeal carriage. However, in our study, sodC-based RT-PCR was 7.5% less sensitive than ctrA. Given the public health impact of possible false-negative results due to the use of the sodC target gene alone, sodC-based RT-PCR for the diagnosis of meningococcal meningitis should be used with caution.
Resumo:
This report describes the development of a SYBR Green I based real time polymerase chain reaction (PCR) protocol for detection on the ABI Prism 7000 instrument. Primers targeting the gene encoding the SSU rRNA were designed to amplify with high specificity DNA from Schistosoma mansoni, in a real time quantitative PCR system. The limit of detection of parasite DNA for the system was 10 fg of purified genomic DNA, that means less than the equivalent to one parasite cell (genome ~580 fg DNA). The efficiency was 0.99 and the correlation coefficient (R²) was 0.97. When different copy numbers of the target amplicon were used as standards, the assay could detect at least 10 copies of the specific target. The primers used were designed to amplify a 106 bp DNA fragment (Tm 83ºC). The assay was highly specific for S. mansoni, and did not recognize DNA from closely related non-schistosome trematodes. The real time PCR allowed for accurate quantification of S. mansoni DNA and no time-consuming post-PCR detection of amplification products by gel electrophoresis was required. The assay is potentially able to quantify S. mansoni DNA (and indirectly parasite burden) in a number of samples, such as snail tissue, serum and feces from patients, and cercaria infested water. Thus, these PCR protocols have potential to be used as tools for monitoring of schistosome transmission and quantitative diagnosis of human infection.
Resumo:
This study aimed to evaluate the use of conventional polymerase chain reaction (cPCR) and real-time quantitative PCR (qPCR) in the diagnosis of human strongyloidiasis from stool samples in tropical areas. Stool samples were collected from individuals and were determined to be positive for Strongyloides stercoralis (group I), negative for S. stercoralis (group II) and positive for other enteroparasite species (group III). DNA specific to S. stercoralis was found in 76.7% of group I samples by cPCR and in 90% of group I samples by qPCR. The results show that molecular methods can be used as alternative tools for detecting S. stercoralis in human stool samples in tropical areas.
Resumo:
Objective: To assess quantitative real-time polymerase chain reaction (q-PCR) for the sputum smear diagnosis of pulmonary tuberculosis (PTB) in patients living with HIV/AIDS with a clinical suspicion of PTB.Method: This is a prospective study to assess the accuracy of a diagnostic test, conducted on 140 sputum specimens from 140 patients living with HIV/AIDS with a clinical suspicion of PTB, attended at two referral hospitals for people living with HIV/AIDS in the city of Recife, Pernambuco, Brazil. A Löwenstein-Jensen medium culture and 7H9 broth were used as gold standard.Results: Of the 140 sputum samples, 47 (33.6%) were positive with the gold standard. q-PCR was positive in 42 (30%) of the 140 patients. Only one (0.71%) did not correspond to the culture. The sensitivity, specificity and accuracy of the q-PCR were 87.2%, 98.9% and 95% respectively. In 39 (93%) of the 42 q-PCR positive cases, the CT (threshold cycle) was equal to or less than 37.Conclusion: q-PCR performed on sputum smears from patients living with HIV/AIDS demonstrated satisfactory sensitivity, specificity and accuracy, and may therefore be recommended as a method for diagnosing PTB.
Resumo:
Viruses are the major contributors to the morbidity and mortality of upper and lower acute respiratory infections (ARIs) for all age groups. The aim of this study was to determine the frequencies for a large range of respiratory viruses using a sensitive molecular detection technique in specimens from outpatients of all ages with ARIs. Nasopharyngeal aspirates were obtained from 162 individuals between August 2007-August 2009. Twenty-three pathogenic respiratory agents, 18 respiratory viruses and five bacteria were investigated using multiplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) and indirect immunofluorescence assay (IIF). Through IIF, 33 (20.4%) specimens with respiratory virus were recognised, with influenza virus representing over half of the positive samples. Through a multiplex real-time RT-PCR assay, 88 (54.3%) positive samples were detected; the most prevalent respiratory viral pathogens were influenza, human rhinovirus and respiratory syncytial virus (RSV). Six cases of viral co-detection were observed, mainly involving RSV. The use of multiplex real-time RT-PCR increased the viral detection by 33.9% and revealed a larger number of respiratory viruses implicated in ARI cases, including the most recently described respiratory viruses [human bocavirus, human metapneumovirus, influenza A (H1N1) pdm09 virus, human coronavirus (HCoV) NL63 and HCoV HKU1].
Resumo:
We describe a simple method for detection of Plasmodium vivaxand Plasmodium falciparum infection in anophelines using a triplex TaqMan real-time polymerase chain reaction (PCR) assay (18S rRNA). We tested the assay on Anopheles darlingi and Anopheles stephensi colony mosquitoes fed withPlasmodium-infected blood meals and in duplicate on field collected An. darlingi. We compared the real-time PCR results of colony-infected and field collected An. darlingi, separately, to a conventional PCR method. We determined that a cytochromeb-PCR method was only 3.33% as sensitive and 93.38% as specific as our real-time PCR assay with field-collected samples. We demonstrate that this assay is sensitive, specific and reproducible.
Resumo:
This study aimed to standardise an in-house real-time polymerase chain reaction (rtPCR) to allow quantification of hepatitis B virus (HBV) DNA in serum or plasma samples, and to compare this method with two commercial assays, the Cobas Amplicor HBV monitor and the Cobas AmpliPrep/Cobas TaqMan HBV test. Samples from 397 patients from the state of São Paulo were analysed by all three methods. Fifty-two samples were from patients who were human immunodeficiency virus and hepatitis C virus positive, but HBV negative. Genotypes were characterised, and the viral load was measure in each sample. The in-house rtPCR showed an excellent success rate compared with commercial tests; inter-assay and intra-assay coefficients correlated with commercial tests (r = 0.96 and r = 0.913, p < 0.001) and the in-house test showed no genotype-dependent differences in detection and quantification rates. The in-house assay tested in this study could be used for screening and quantifying HBV DNA in order to monitor patients during therapy.
Resumo:
The rickettsia Anaplasma marginale is considered the main agent of bovine anaplasmosis. Due the nonspecific clinical signs of the anaplasmosis, the diagnosis of infection depends of laboratory confirmation. In recent years, molecular diagnostic methods have been used to detect A. marginale in cattle. However, the existence of a large number of assays of different sensitivity and cost makes the choice of an appropriate test difficult. In the present study, a real-time Polymerase Chain Reaction (PCR) based on the msp5 target gene was quantitatively assessed and compared to an end point PCR. Both reactions were subjected to sensitivity and specificity evaluation using plasmid DNA and samples from cattle experimentally infected with A. marginale. A comparative field trial of the tests was carried out using samples of cattle from a stable enzootic area for A. marginale. The real-time PCR showed a higher sensitivity than the end point PCR. This reaction (i.e. real-time PCR) was able to detect one copy of the msp5 gene in 100 ηg of plasmidial DNA, and more than 80% of its results were positive among experimentally infected animals seven days after infection. In addition, based on in silico analysis, the real-time PCR evaluated in the present study appears to be useful for the detection of A. ovis.
Resumo:
We show here a simplified RT-PCR for identification of dengue virus types 1 and 2. Five dengue virus strains, isolated from Brazilian patients, and yellow fever vaccine 17DD as a negative control, were used in this study. C6/36 cells were infected and supernatants were collected after 7 days. The RT-PCR, done in a single reaction vessel, was carried out following a 1/10 dilution of virus in distilled water or in a detergent mixture containing Nonidet P40. The 50 µl assay reaction mixture included 50 pmol of specific primers amplifying a 482 base pair sequence for dengue type 1 and 210 base pair sequence for dengue type 2. In other assays, we used dengue virus consensus primers having maximum sequence similarity to the four serotypes, amplifying a 511 base pair sequence. The reaction mixture also contained 0.1 mM of the four deoxynucleoside triphosphates, 7.5 U of reverse transcriptase, 1U of thermostable Taq DNA polymerase. The mixture was incubated for 5 minutes at 37ºC for reverse transcription followed by 30 cycles of two-step PCR amplification (92ºC for 60 seconds, 53ºC for 60 seconds) with slow temperature increment. The PCR products were subjected to 1.7% agarose gel electrophoresis and visualized by UV light after staining with ethidium bromide solution. Low virus titer around 10 3, 6 TCID50/ml was detected by RT-PCR for dengue type 1. Specific DNA amplification was observed with all the Brazilian dengue strains by using dengue virus consensus primers. As compared to other RT-PCRs, this assay is less laborious, done in a shorter time, and has reduced risk of contamination
Resumo:
INTRODUCTION: Laboratory-based surveillance is an important component in the control of vancomycin resistant enterococci (VRE). METHODS: The study aimed to evaluate real-time polymerase chain reaction (RT-PCR) (genes vanA-vanB) for VRE detection on 115 swabs from patients included in a surveillance program. RESULTS: Sensitivity of RT-PCR was similar to primary culture (75% and 79.5%, respectively) when compared to broth enriched culture, whereas specificity was 83.1%. CONCLUSIONS: RT-PCR provides same day results, however it showed low sensitivity for VRE detection.
Resumo:
Mycobacterium tuberculosis is the bacterium that causes tuberculosis (TB), a leading cause of death from infectious disease worldwide. Rapid diagnosis of resistant strains is important for the control of TB. Real-time polymerase chain reaction (RT-PCR) assays may detect all of the mutations that occur in the M. tuberculosis 81-bp core region of the rpoB gene, which is responsible for resistance to rifampin (RIF) and codon 315 of the katG gene and the inhA ribosomal binding site, which are responsible for isoniazid (INH). The goal of this study was to assess the performance of RT-PCR compared to traditional culture-based methods for determining the drug susceptibility of M. tuberculosis. BACTEC TM MGIT TM 960 was used as the gold standard method for phenotypic drug susceptibility testing. Susceptibilities to INH and RIF were also determined by genotyping of katG, inhA and rpoB genes. RT-PCR based on molecular beacons probes was used to detect specific point mutations associated with resistance. The sensitivities of RT-PCR in detecting INH resistance using katG and inhA targets individually were 55% and 25%, respectively and 73% when combined. The sensitivity of the RT-PCR assay in detecting RIF resistance was 99%. The median time to complete the RT-PCR assay was three-four hours. The specificities for tests were both 100%. Our results confirm that RT-PCR can detect INH and RIF resistance in less than four hours with high sensitivity.
Resumo:
Rocio virus (ROCV) is an encephalitic flavivirus endemic to Brazil. Experimental flavivirus infections have previously demonstrated a persistent infection and, in this study, we investigated the persistence of ROCV infection in golden hamsters (Mesocricetus auratus). The hamsters were infected intraperitoneally with 9.8 LD50/0.02 mL of ROCV and later anaesthetised and sacrificed at various time points over a 120-day period to collect of blood, urine and organ samples. The viral titres were quantified by real-time-polymerase chain reaction (qRT-PCR). The specimens were used to infect Vero cells and ROCV antigens in the cells were detected by immunefluorescence assay. The levels of antibodies were determined by the haemagglutination inhibition technique. A histopathological examination was performed on the tissues by staining with haematoxylin-eosin and detecting viral antigens by immunohistochemistry (IHC). ROCV induced a strong immune response and was pathogenic in hamsters through neuroinvasion. ROCV was recovered from Vero cells exposed to samples from the viscera, brain, blood, serum and urine and was detected by qRT-PCR in the brain, liver and blood for three months after infection. ROCV induced histopathological changes and the expression of viral antigens, which were detected by IHC in the liver, kidney, lung and brain up to four months after infection. These findings show that ROCV is pathogenic to golden hamsters and has the capacity to cause persistent infection in animals after intraperitoneal infection.
Resumo:
A novel SYBR® green-real time polymerase chain reaction (qPCR) was developed to detect two Bartonellaspecies, B. henselae and B. clarridgeiae, directly from blood samples. The test was used in blood samples obtained from cats living in animal shelters in Southern Brazil. Results were compared with those obtained by conventional PCR targeting Bartonella spp. Among the 47 samples analyzed, eight were positive using the conventional PCR and 12 were positive using qPCR. Importantly, the new qPCR detected the presence of both B. henselae and B. clarridgeiae in two samples. The results show that the qPCR described here may be a reliable tool for the screening and differentiation of two important Bartonella species.