22 resultados para Quality Management System
em Scielo Saúde Pública - SP
Resumo:
A sustainable management of soils with low natural fertility on family farms in the humid tropics is a great challenge and overcoming it would be an enormous benefit for the environment and the farmers. The objective of this study was to assess the environmental and agronomic benefits of alley cropping, based on the evaluation of C sequestration, soil quality indicators, and corn yields. Combinations of four legumes were used in alley cropping systems in the following treatments: Clitoria fairchildiana + Cajanus cajan; Acacia mangium + Cajanus cajan; Leucaena leucocephala + Cajanus cajan; Clitoria fairchildiana + Leucaena leucocephala; Leucaena leucocephala + Acacia mangium and a control. Corn was used as a cash crop. The C content was determined in the different compartments of soil organic matter, CEC, available P, base saturation, percentage of water saturation, the period of the root hospitality factor below the critical level and corn yield. It was concluded that alley cropping could substitute the slash and burn system in the humid tropics. The main environmental benefit of alley cropping is the maintenance of a dynamic equilibrium between C input and output that could sustain up to 10 Mg ha-1 of C in the litter layer, decreasing atmospheric CO2 levels. Alley cropping is also beneficial from the agricultural point of view, because it increases base saturation and decreases physical resistance to root penetration in the soil layer 0 - 10 cm, which ensures the increase and sustainability of corn yield.
Resumo:
Quality Management System has been implemented at the René Rachou Research Center since 2003. This study investigated its importance for collaborators (Cs) in laboratories. This was a quantitative and descriptive study performed in a group of 113 collaborators. It was based on the World Health Organization handbook: Quality Practices in Basic Biomedical Research. The questionnaires evaluated the parameters using the Likert scale. Biosafety, training and ethics were considered to be the most important parameters. Supervision and quality assurance, data recording, study plan, SOPs and file storage achieved intermediate evaluation. The lower frequency of responses was obtained for result report, result verification, personnel and publishing practices. Understanding the perception of the collaborators allows the development of improvement actions aiming the construction of a training program directing strategies for disseminating quality.
Resumo:
This study aims at detailing bimodal pore distribution by means of water retention curve in an oxidic-gibbsitic Latosol and in a kaolinitic cambisol Latossol under conservation management system of coffee crop. Samples were collected at depths of 20; 40; 80; 120 and 160 cm on coffee trees rows and between rows under oxidic-gibbsitic Latosol (LVd) and kaolinitic cambisol Latossol (LVAd). Water retention curve was determined at matrix potentials (Ψm) -1; -2; -4; -6; -10 kPa obtained from the suction unit; the Ψm of -33; -100; -500; -1,500 kPa were obtained by the Richards extractor, and WP4-T psychrometer was used to determine Ψm -1,500 to -300,000 kPa. The water retention data were adjusted to the double van Genuchten model by nonlinear model procedures of the R 2.12.1 software. Was estimated the model parameter and inflection point slope. The system promoted changes in soil structure and water retention for the conditions evaluated, and both showed bimodal pores distribution, which were stronger in LVd. There was a strong influence of mineralogy gibbsitic in the water retention more negative than Ψm -1500 kPa, reflected in the values of the residual water content.
Resumo:
This paper shows the results of the empirical study conducted in 186 tourist accommodation businesses in Spain certified under the "Q for Tourist Quality", own System Quality Management. It was raised with the purpose of analyzing the structure of the relationship between critical quality factors and results-social impact, how they operate and the level of their influence on obtaining these results within the company. Starting from a deep theoretical revision we propose a theoretical model together with the hypotheses to be tested, and we proceed to validation using the technique of Structural Equation Models. The results obtained show that companies wishing to improve their social impact should take into account that leadership is the most important factor to achieve it. Leadership indirectly affects the social impact through its influence on alliances and resources, quality policy/planning, personnel management and learning.
Resumo:
OBJECTIVES: To evaluate the use of inhaled nitric oxide (NO) in the management of persistent pulmonary hypertension of the newborn. METHODS: Computerized bibliographic search on MEDLINE, CURRENT CONTENTS and LILACS covering the period from January 1990 to March 1998; review of references of all papers found on the subject. Only randomized clinical trials evaluating nitric oxide and conventional treatment were included. OUTCOMES STUDIED: death, requirement for extracorporeal membrane oxygenation (ECMO), systemic oxygenation, complications at the central nervous system and development of chronic pulmonary disease. The methodologic quality of the studies was evaluated by a quality score system, on a scale of 13 points. RESULTS: For infants without congenital diaphragmatic hernia, inhaled NO did not change mortality (typical odds ratio: 1.04; 95% CI: 0.6 to 1.8); the need for ECMO was reduced (relative risk: 0.73; 95% CI: 0.60 to 0.90), and the oxygenation was improved (PaO2 by a mean of 53.3 mm Hg; 95% CI: 44.8 to 61.4; oxygenation index by a mean of -12.2; 95% CI: -14.1 to -9.9). For infants with congenital diaphragmatic hernia, mortality, requirement for ECMO, and oxygenation were not changed. For all infants, central nervous system complications and incidence of chronic pulmonary disease did not change. CONCLUSIONS: Inhaled NO improves oxygenation and reduces requirement for ECMO only in newborns with persistent pulmonary hypertension who do not have diaphragmatic hernia. The risk of complications of the central nervous system and chronic pulmonary disease were not affected by inhaled NO.
Resumo:
Vegetable production in conservation tillage has increased in Brazil, with positive effects on the soil quality. Since management systems alter the quantity and quality of organic matter, this study evaluated the influence of different management systems and cover crops on the organic matter dynamics of a dystrophic Red Latosol under vegetables. The treatments consisted of the combination of three soil tillage systems: no-tillage (NT), reduced tillage (RT) and conventional tillage (CT) and of two cover crops: maize monoculture and maize-mucuna intercrop. Vegetables were grown in the winter and the cover crops in the summer for straw production. The experiment was arranged in a randomized block design with four replications. Soil samples were collected between the crop rows in three layers (0.0-0.05, 0.05-0.10, and 0.10-0.30 m) twice: in October, before planting cover crops for straw, and in July, during vegetable cultivation. The total organic carbon (TOC), microbial biomass carbon (MBC), oxidizable fractions, and the carbon fractions fulvic acid (C FA), humic acid (C HA) and humin (C HUM) were determined. The main changes in these properties occurred in the upper layers (0.0-0.05 and 0.05-0.10 m) where, in general, TOC levels were highest in NT with maize straw. The MBC levels were lowest in CT systems, indicating sensitivity to soil disturbance. Under mucuna, the levels of C HA were lower in RT than NT systems, while the C FA levels were lower in RT than CT. For vegetable production, the C HUM values were lowest in the 0.05-0.10 m layer under CT. With regard to the oxidizable fractions, the tillage systems differed only in the most labile C fractions, with higher levels in NT than CT in the 0.0-0.05 m layer in both summer and winter, with no differences between these systems in the other layers. The cabbage yield was not influenced by the soil management system, but benefited from the mulch production of the preceding maize-mucuna intercrop as cover plant.
Resumo:
Soils are the foundation of terrestrial ecosystems and their role in food production is fundamental, although physical degradation has been observed in recent years, caused by different cultural practices that modify structures and consequently the functioning of soils. The objective of this study was to evaluate possible structural changes and degradation in an Oxisol under different managements for 20 years: no-tillage cultivation with and without crop rotation, perennial crop and conventional tillage, plus a forested area (reference). Initially, the crop profile was described and subsequently, 10 samples per management system and forest soil were collected to quantify soil organic matter, flocculation degree, bulk density, and macroporosity. The results indicated structural changes down to a soil depth of 50 cm, with predominance of structural units ∆μ (intermediate compaction level) under perennial crop and no-tillage crop rotation, and of structural units ∆ (compacted) under conventional tillage and no-tillage. The soil was increasingly degraded in the increasing order: forest => no-tillage crop rotation => perennial crop => no-tillage without crop rotation => conventional tillage. In all managements, the values of organic matter and macroporosity were always below and bulk density always above those of the reference area (forest) and, under no-tillage crop rotation and perennial crop, the flocculation degree was proportionally equal to that of the reference area.
Resumo:
ABSTRACT Changes in soil physical properties due to different management systems occur slowly, and long-term studies are needed to assess soil quality. The objectives of this study were to evaluate the effects of soil management systems and liming methods on the physical properties of a Latossolo Bruno Alumínico típico (Hapludox). A long-term experiment that began in 1978 with conventional and no-tillage systems was assessed. In addition, different liming methods (no lime, incorporated lime, and lime on the soil surface) have been applied since 1987 and were also evaluated in this study. Moreover, an area of native forest was evaluated and considered a reference for the natural condition of the soil. Soil physical properties were evaluated in layers to a depth of 1.00 m. Compared to native forest, the conventional tillage and no-tillage systems had higher soil bulk density, penetration resistance, and microporosity, and lower aggregate stability and macroporosity. Compared to the conventional tillage system, long-term no-tillage improved the structure of the Hapludox, as evidenced by increased microporosity and aggregate stability, especially in the soil surface layer. In no-tillage with lime applications sporadically incorporated, soil physical properties did not differ from no-tillage without lime and with lime applied on the soil surface, indicating that this practice maintains the physical quality of soil under no-tillage. Liming in a conventional tillage system improved soil aggregation and reduces penetration resistance in the soil layers near the soil surface. No-tillage was the main practice related to improvement of soil physical quality, and liming methods did not influence soil physical properties in this soil management system.
Resumo:
The objective of this study was to assess the yield and fruit quality of apple produced with a conventional and an organic production systems in Southern Brazil. The orchards consisted of alternate rows from 10 to 12-year old 'Royal Gala' and 'Fuji' apple trees on M.7 rootstocks, grown as slender spindles, on 4x6 m spacing. Eighteen apple trees of each cultivar and management system were randomly selected and assessed for nutrition, flowering, fruit set, yield, and fruit quality during two growing seasons (2002/2003 and 2003/2004). The organic management system resulted in lower concentrations of K, Mg, and N in leaves and fruits, and in smaller fruits for both cultivars, and lower fruit yield for 'Fuji' than from the conventional production system. For both cultivars, fruits from the organic orchard harvested at commercial maturity had a more yellowish skin background color, higher percentage of blush in the fruit skin, higher soluble solids content, higher density, higher flesh firmness, and higher severity of russet than fruits from the conventional orchard. Fruit from the organic orchard had lower titratable acidity in 'Royal Gala', and higher incidence of moldy core and lower incidence of watercore in 'Fuji', than fruit from the conventional orchard. A non-trained sensory panel detected no significant differences for fruit attributes of taste, flavor and texture between fruit from the production systems for either cultivar.
Resumo:
Abstract Bread is one of the most consumed foods in the world, and alternatives have been sought to extend its shell life, and freezing is one of the most popular methods. The purpose of this study was to evaluate the effect of freezing rate and trehalose concentration on the fermentative and viscoelastic properties of dough and bread quality. Dough was prepared and trehalose was added at three concentrations (0, 400, 800 ppm); dough was pre fermented and frozen at two freezing rates then stored for 42 days. Frozen dough samples were thawed every two weeks. CO2 production and elastic and viscous modulus were determined. In addition, bread was elaborated and specific volume and firmness were evaluated. High trehalose concentrations (400 and 800 ppm) produced dough with the best viscoelastic and fermentative properties. Greater bread volume and less firmness were observed when a slow freezing rate (-.14 °C/min) was employed.
Resumo:
Soil management, in terms of tillage and cropping systems, strongly influences the biological properties of soil involved in the suppression of plant diseases. Fungistasis mediated by soil microbiota is an important component of disease-suppressive soils. We evaluated the influence of different management systems on fungistasis against Fusarium graminearum, the relationship of fungistasis to the bacterial profile of the soil, and the possible mechanisms involved in this process. Samples were taken from a long-term experiment set up in a Paleudult soil under conventional tillage or no-tillage management and three cropping systems: black oat (Avena strigose L.) + vetch (Vicia sativa L.)/maize (Zea mays L.) + cowpea (Vigna sinensis L.), black oat/maize, and vetch/maize. Soil fungistasis was evaluated in terms of reduction of radial growth of F. graminearum, and bacterial diversity was assessed using ribosomal intergenic spacer analysis (RISA). A total of 120 bacterial isolates were obtained and evaluated for antibiosis, and production of volatile compounds and siderophores. No-tillage soil samples showed the highest level of F. graminearum fungistasis by sharply reducing the development of this pathogen. Of the cropping systems tested, the vetch + black oat/maize + cowpea system showed the highest fungistasis and the oat/maize system showed the lowest. The management system also affected the genetic profile of the bacteria isolated, with the systems from fungistatic soils showing greater similarity. Although there was no clear relationship between soil management and the characteristics of the bacterial isolates, we may conclude that antibiosis and the production of siderophores were the main mechanisms accounting for fungistasis.
Resumo:
Preharvest burning is widely used in Brazil for sugarcane cropping. However, due to environmental restrictions, harvest without burning is becoming the predominant option. Consequently, changes in the microbial community are expected from crop residue accumulation on the soil surface, as well as alterations in soil metabolic diversity as of the first harvest. Because biological properties respond quickly and can be used to monitor environmental changes, we evaluated soil metabolic diversity and bacterial community structure after the first harvest under sugarcane management without burning compared to management with preharvest burning. Soil samples were collected under three sugarcane varieties (SP813250, SP801842 and RB72454) and two harvest management systems (without and with preharvest burning). Microbial biomass C (MBC), carbon (C) substrate utilization profiles, bacterial community structure (based on profiles of 16S rRNA gene amplicons), and soil chemical properties were determined. MBC was not different among the treatments. C-substrate utilization and metabolic diversity were lower in soil without burning, except for the evenness index of C-substrate utilization. Soil samples under the variety SP801842 showed the greatest changes in substrate utilization and metabolic diversity, but showed no differences in bacterial community structure, regardless of the harvest management system. In conclusion, combined analysis of soil chemical and microbiological data can detect early changes in microbial metabolic capacity and diversity, with lower values in management without burning. However, after the first harvest, there were no changes in the soil bacterial community structure detected by PCR-DGGE under the sugarcane variety SP801842. Therefore, the metabolic profile is a more sensitive indicator of early changes in the soil microbial community caused by the harvest management system.
Resumo:
ABSTRACT Understanding the spatial behavior of soil physical properties under no-tillage system (NT) is required for the adoption and maintenance of a sustainable soil management system. The aims of this study were to quantify soil bulk density (BD), porosity in the soil macropore domain (PORp) and in the soil matrix domain (PORm), air capacity in the soil matrix (ACm), field capacity (FC), and soil water storage capacity (FC/TP) in the row (R), interrow (IR), and intermediate position between R and IR (designated IP) in the 0.0-0.10 and 0.10-0.20 m soil layers under NT; and to verify if these soil properties have systematic variation in sampling positions related to rows and interrows of corn. Soil sampling was carried out in transect perpendicular to the corn rows in which 40 sampling points were selected at each position (R, IR, IP) and in each soil layer, obtaining undisturbed samples to determine the aforementioned soil physical properties. The influence of sampling position on systematic variation of soil physical properties was evaluated by spectral analysis. In the 0.0-0.1 m layer, tilling the crop rows at the time of planting led to differences in BD, PORp, ACm, FC and FC/TP only in the R position. In the R position, the FC/TP ratio was considered close to ideal (0.66), indicating good water and air availability at this sampling position. The R position also showed BD values lower than the critical bulk density that restricts root growth, suggesting good soil physical conditions for seed germination and plant establishment. Spectral analysis indicated that there was systematic variation in soil physical properties evaluated in the 0.0-0.1 m layer, except for PORm. These results indicated that the soil physical properties evaluated in the 0.0-0.1 m layer were associated with soil position in the rows and interrows of corn. Thus, proper assessment of soil physical properties under NT must take into consideration the sampling positions and previous location of crop rows and interrows.
Resumo:
To evaluate the effect of soil management systems on population of white grubs, (Phyllophaga cuyabana Moser), and on its damage in soybean, experiments were set up under no-tillage and conventional tillage (one disk plow, and a leveling disk harrow) areas. Primary tillage equipment, used in other soil management systems, such as moldboard plow, disk plow, chisel plow and heavy duty disk harrow were also tested. Fluctuation of P. cuyabana population and the extent of its damage to soybean was similar under no-tillage and conventional tillage systems. Results comparing a range of primary tillage equipment showed that it affected soil insect populations differently, depending on the time during the season in which tillage was executed. Larval mortality could mostly be attributed to their exposure to adverse factors, soon after tillage, than to changes in soil conditions. Reduction of white grub population was more evident in plots managed by heavier equipment, such as the moldboard plow. Soil tillage could be one component within the soil pest management system in soybean, however, its use can not be generalized.
Resumo:
The objective of this experiment was to study the effects of soil management systems on the bulk density, chemical soil properties, and on the soil microbial activity on a Latossolo Vermelho distrófico (Oxisol). Soil samples were collected from plots under the following management conditions: a) natural dense "cerrado" vegetation (savanna); b) degraded Brachiaria decumbens pasture, 20 years old; c) no-tillage treatment with annual crop sequence (bean, corn, soybean and dark-oat in continuous rotation), 8 years old; d) conventional tillage treatment with crop residues added to the soil, and annual crop sequence, 10 years old. The continuous use of no-tillage system resulted in an increase in microbial biomass and decrease in soil basal respiration, therefore displaying evident long-term effects on the increase of soil C content. The no-tillage system also provided an improvement in bulk density and chemical properties of the soil. Hence, the no-tillage management system could be an alternative for the conservation and maintenance of physical and chemical conditions and the productive potential of "cerrado" soils.