70 resultados para Protein fragment complementation assay
em Scielo Saúde Pública - SP
Resumo:
Rhoptry-associated protein 2 (RAP2) is known to be discharged from rhoptry onto the membrane surface of infected and uninfected erythrocytes (UEs) ex vivo and in vitro and this information provides new insights into the understanding of the pathology of severe anemia in falciparum malaria. In this study, a hexahistidine-tagged recombinant protein corresponding to residues 5-190 of the N-terminal of Plasmodium falciparum RAP2 (rN-RAP2) was produced using a new method of solubilization and purification. Expression was induced with D-lactose, a less expensive alternative inducer to the more common isopropyl-²-D-thio-galactopyranosidase. The recombinant protein was purified using two types of commercially-available affinity columns, iminodiacetic and nitrilotriacetic. rN-RAP2 had immunogenic potential, since it induced high titers of anti-RAP2 antibodies in mice. These antibodies recognized full-length RAP2 prepared from Triton X-100 extracts from two strains of P. falciparum. In fact, the antibody recognized a 29-kDa product of RAP2 cleavage as well as 82 and 70-kDa products of RAP1 cleavage. These results indicate that the two antigens share sequence epitopes. Our expressed protein fragment was shown to contain a functional epitope that is also present in rhoptry-derived ring surface protein 2 which attaches to the surface of both infected and UEs and erythroid precursor cells in the bone marrow of malaria patients. Serum from malaria patients who developed anemia during infection recognized rN-RAP2, suggesting that this protein fragment may be important for epidemiological studies investigating whether immune responses to RAP2 exacerbate hemolysis in falciparum malaria patients.
Resumo:
In patients with uremia, intact parathyroid hormone (PTH) measurement appears to overestimate the biologically active hormone in circulation. The recent description of the accumulation in these patients of a non-intact PTH form measured by the standard immunometric assays, re-opened the question. In this study we submitted serum samples from 7 patients with primary hyperparathyroidism (PHP) and from 10 patients with hyperparathyroidism secondary to chronic renal failure (SHP) to preparative HPLC in order to discriminate the molecular forms measured by our currently used immunofluorometric assay for intact PTH. The elution profile obtained with the HPLC system showed two clearly defined peaks, the first one corresponding to a lower molecular weight form, and the second to the intact PTH (1-84) form. In patients with SHP the area under the curve for the first peak (mean 29.5%, range 20.6 to 40.4%) was significantly greater than that observed for patients with PHP (mean 15.6%, range 5.6 to 21.9%). This confirms previous studies showing accumulation of molecular forms of slightly lower molecular weight, presumably PTH (7-84), in patients with SHP and, to a lesser extent, in patients with PHP. The real necessity of assays that discriminate between these two molecular forms is debatable.
Resumo:
Introduction: We evaluated the in vitro antimalarial activity of tigecycline as an alternative drug for the treatment of severe malaria. Methods: A chloroquine-sensitive Plasmodium falciparum reference strain, a chloroquine-resistant reference strain, and three clinical isolates were tested for in vitro susceptibility to tigecycline. A histidine-rich protein in vitro assay was used to evaluate antimalarial activity. Results: The geometric-mean 50% effective concentration (EC50%) of tigecycline was 535.5 nM (confidence interval (CI): 344.3-726.8). No significant correlation was found between the EC50% of tigecycline and that of any other tested antimalarial drug. Conclusions: Tigecycline may represent an alternative drug for the treatment of patients with severe malaria.
Resumo:
Eight-week old conventional female Swiss mice were inoculated intravenously with Yersinia enterocolitica O:3. A second group of normal mice was used as control. Five mice from each group were bled by heart puncture and their spleens were removed for spleen cell collection on the 3rd, 5th, 7th, 10th, 14th and 21st day after infection. Immunoglobulin-secreting spleen cells were detected by the isotype-specific protein A plaque assay. Total immunoglobulin levels were determined in mouse serum by single radial immunodiffusion and the presence of autoantibodies was determined by ELISA. We observed a marked increase in the total number of cells secreting immunoglobulins of all isotypes as early as on the 3rd day post-infection and the peak of secretion occurred on the 7th day. At the peak of the immunoglobulin response, the total number of secreting cells was 19 times higher than that of control mice and most immunoglobulin-secreting cells were of the IgG2a isotype. On the 10th day post-infection, total serum immunoglobulin values were 2 times higher in infected animals when compared to the control group, and continued at this level up to the 21st day post-infection. Serum absorption with viable Y. enterocolitica cells had little effect on antibody levels detected by single radial immunodiffusion. Analysis of serum autoantibody levels revealed that Y. enterocolitica infection induced an increase of anti-myosin and anti-myelin immunoglobulins. The sera did not react with collagen. The present study demonstrates that Y. enterocolitica O:3 infection induces polyclonal activation of murine B cells which is correlated with the activation of some autoreactive lymphocyte clones
Resumo:
Screening blood donations for anti-HCV antibodies and alanine aminotransferase (ALT) serum levels generally prevents the transmission of hepatitis C virus (HCV) by transfusion. The aim of the present study was to evaluate the efficiency of the enzyme immunoassay (EIA) screening policy in identifying potentially infectious blood donors capable to transmit hepatitis C through blood transfusion. We have used a reverse transcriptase (RT)-nested polymerase chain reaction (PCR) to investigate the presence of HCV-RNA in blood donors. The prevalence of HCV-RNA positive individuals was compared with the recombinant immunoblot assay (RIBA-2) results in order to assess the usefulness of both tests as confirmatory assays. Both tests results were also compared with the EIA-2 OD/C ratio (optical densities of the samples divided by the cut off value). ALT results were expressed as the ALT quotient (qALT), calculated dividing the ALT value of the samples by the maximum normal value (53UI/l) for the method. Donors (n=178) were divided into five groups according to their EIA anti-HCV status and qALT: group A (EIA > or = 3, ALT<1), group B (EIA > or = 3, ALT>1), group C (1<=EIA<3, ALT<1), group D (1<=EIA<3, ALT>1) and group E (EIA<=0.7). HCV sequences were detected by RT-nested PCR, using primers for the most conserved region of viral genome. RIBA-2 was applied to the same samples. In group A (n=6), all samples were positive by RT-nested PCR and RIBA-2. Among 124 samples in group B, 120 (96.8%) were RIBA-2 positive and 4 (3.2%) were RIBA-2 indeterminate but were seropositive for antigen c22.3. In group B, 109 (87.9%) of the RIBA-2 positive samples were also RT-nested PCR positive, as well as were all RIBA-2 indeterminate samples. In group C, all samples (n=9) were RT-nested PCR negative: 4 (44.4%) were also RIBA-2 negative, 4 (44.4%) were RIBA-2 positive and 1 (11.1%) was RIBA-2 indeterminate. HCV-RNA was detected by RT-nested PCR in 3 (37.5%) out of 8 samples in group D. Only one of them was also RIBA-2 positive, all the others were RIBA-2 indeterminate. All of the group E samples (controls) were RT- nested PCR and RIBA-2 negative. Our study suggests a strong relation between anti-HCV EIA-2 ratio > or = 3 and detectable HCV-RNA by RT-nested PCR. We have also noted that blood donors with RIBA-2 indeterminate presented a high degree of detectable HCV-RNA using RT-nested PCR (75%), especially when the c22.3 band was detected.
Resumo:
The WHO criterion of defering any donation of blood by a confirmed case of malaria for three years after cessation of therapy can not be applied in areas where malaria in endemic. For this reason we developed an immunoenzymatic assay for the detection of plasmodial antigens for blood screening in malararial endemic areas. So, we tested sera from 191 individuals. Among patients with active disease 100% of the cases of Plasmodium falciparum or mixed infections and 91.7% of those with P. vivax were positive for the presence of plasmodial antigens. The lower parasitaemia detected was 0.0003% for P. vivax malária. When the frequency of positive circulating malarial antigens was evaluated among asymptomatic and symptomatic individuals with negative TBS, positive results were found in respectively 38.7% and 17.7% of the individuals studied in the 30 days after confirmed malaria attack. Data provide by these assays have shown that ELISA seemed to be more sensitive than parasitological examination for malaria diagnosis. This test by virtue of its high sensivity and the facilities in processing a large number of specimens, can prove to be useful in endemic areas for the recognition of asymptomatic malaria and screening of blood donors.
Resumo:
In a previous study, the Schistosoma mansoni Rho1 protein was able to complement Rho1 null mutant Saccharomyces cerevisiae cells at restrictive temperatures and under osmotic stress (low calcium concentration) better than the human homologue (RhoA). It is known that under osmotic stress, the S. cerevisiae Rho1 triggers two distinct pathways: activation of the membrane 1,3-beta-glucan synthase enzymatic complex and activation of the protein kinase C1 signal transduction pathway, promoting the transcription of response genes. In the present work the SmRho1 protein and its mutants smrho1E97P, smrho1L101T, and smrho1E97P, L101T were used to try to clarify the basis for the differential complementation of Rho1 knockout yeast strain by the human and S. mansoni genes. Experiments of functional complementation in the presence of caffeine and in the presence of the osmotic regulator sorbitol were conducted. SmRho1 and its mutants showed a differential complementation of the yeast cells in the presence of caffeine, since smrho1E97P and smrho1E97P, L101T mutants showed a delay in the growth when compared to the yeast complemented with the wild type SmRho1. However, in the presence of sorbitol and caffeine the wild type SmRho1 and mutants showed a similar complementation phenotype, as they allowed yeast growth in all caffeine concentrations tested.
Resumo:
Triatoma dimidiata is the most important Chagas disease insect vector in Central America as this species is primarily responsible for Trypanosoma cruzi transmission to humans, the protozoan parasite that causes Chagas disease. T. dimidiata sensu lato is a genetically diverse assemblage of taxa and effective vector control requires a clear understanding of the geographic distribution and epidemiological importance of its taxa. The nuclear ribosomal internal transcribed spacer 2 (ITS-2) is frequently used to infer the systematics of triatomines. However, oftentimes amplification and sequencing of ITS-2 fails, likely due to both the large polymerase chain reaction (PCR) product and polymerase slippage near the 5' end. To overcome these challenges we have designed new primers that amplify only the 3'-most 200 base pairs of ITS-2. This region distinguishes the ITS-2 group for 100% of known T. dimidiata haplotypes. Furthermore, we have developed a PCR-restriction fragment length polymorphism (RFLP) approach to determine the ITS-2 group, greatly reducing, but not eliminating, the number of amplified products that need to be sequenced. Although there are limitations with this new PCR-RFLP approach, its use will help with understanding the geographic distribution of T. dimidiata taxa and can facilitate other studies characterising the taxa, e.g. their ecology, evolution and epidemiological importance, thus improving vector control.
Resumo:
The coat protein gene of Apple stem grooving virus (ASGV) was amplified by RT-PCR, cloned, sequenced and subcloned in the expression vector pMal-c2. This plasmid was used to transform Escherichia coli BL21c+ competent cells. The ASGV coat protein (cp) was expressed as a fusion protein containing a fragment of E. coli maltose binding protein (MBP). Bacterial cells were disrupted by sonication and the ASGVcp/MBP fusion protein was purified by amylose resin affinity chromatography. Polyclonal antibodies from rabbits immunized with the fusion protein gave specific reactions to ASGV from infected apple (Malus domestica) cv. Fuji Irradiada and Chenopodium quinoa at dilutions of up to 1:1,000 and 1:2,000, respectively, in plate trapped ELISA. The ASGVcp/MBP fusion protein reacted to a commercial antiserum against ASGV in immunoblotting assay. The IgG against ASGVcp/MBP performed favorably in specificity and sensitivity to the virus. This method represents an additional tool for the efficient ASGV-indexing of apple propagative and mother stock materials, and for use in support of biological and molecular techniques.
Resumo:
The histone-like protein H1 (H-NS) is an abundant structural component of the bacterial nucleoid and influences many cellular processes including recombination, transcription and transposition. Mutations in the hns gene encoding H-NS are highly pleiotropic, affecting the expression of many unrelated genes. We have studied the role of H-NS on the regulation of hemolysin gene expression in Serratia marcescens. The Escherichia coli hns mutant carrying S. marcescens hemolysin genes on a plasmid constructed by ligation of the 3.2-kb HindIII-SacI fragment of pR02 into pBluescriptIIKS, showed a high level of expression of this hemolytic factor. To determine the osmoregulation of wild-type and hns defective mutants the cells were grown to mid-logarithmic phase in LB medium with 0.06 or 0.3 M NaCl containing ampicillin and kanamycin, whereas to analyze the effect of pH on hemolysin expression, the cells were grown to late-logarithmic phase in LB medium buffered with 0.1 M Tris-HCl, pH 4.5 to 8.0. To assay growth phase-related hemolysin production, bacterial cells were grown in LB medium supplemented with ampicillin and kanamycin. The expression of S. marcescens hemolysin genes in wild-type E. coli and in an hns-defective derivative at different pH and during different growth phases indicated that, in the absence of H-NS, the expression of hemolysin did not vary with pH changes or growth phases. Furthermore, the data suggest that H-NS may play an important role in the regulation of hemolysin expression in S. marcescens and its effect may be due to changes in DNA topology influencing transcription and thus the amount of hemolysin expression. Implications for the mechanism by which H-NS influences gene expression are discussed.
Resumo:
Fluids in which Mycobacterium tuberculosis are seldom found, such as pleural and cerebrospinal liquids, are good candidates to be studied using PCR techniques. We detail our experience with a PCR assay applied to pleural and cerebrospinal fluids using the primer MPB64. Seventy three specimens were analyzed: 30 pleural fluids (PF), 26 pleural biopsies (PB) and 17 cerebrospinal fluids (CSF). The gold standard for the diagnosis of tuberculous meningitis was the positive culture for M. tuberculosis in CSF. Tuberculous pleural effusion was diagnosed when cultures of PF and/or PB were positive for M. tuberculosis, or the PB histology showed granulomas. Our results, compared to the gold standards employed, showed a sensitivity of 70%, specificity of 88%, positive predictive value of 82% and negative predictive value of 80%. The high specificity of the MPB64 fragment while still retaining a good sensitivity makes it very well suited for pleural and cerebrospinal tuberculosis diagnosis.
Resumo:
INTRODUCTION: West Nile virus (WNV) is a flavivirus with a natural cycle involving mosquitoes and birds. Over the last 11 years, WNV has spread throughout the Americas with the imminent risk of its introduction in Brazil. METHODS: Envelope protein domain III of WNV (rDIII) was bacterially expressed and purified. An enzyme-linked immunosorbent assay with WNV rDIII antigen was standardized against mouse immune fluids (MIAFs) of different flavivirus. RESULTS: WNV rDIII reacted strongly with St. Louis encephalitis virus (SLEV) MIAF but not with other flaviviruses. CONCLUSIONS: This antigen may be a potentially useful tool for serologic diagnosis and may contribute in future epidemiological surveillance of WNV infections in Brazil.
Resumo:
Introduction Molecular biology procedures to detect, genotype and quantify hepatitis C virus (HCV) RNA in clinical samples have been extensively described. Routine commercial methods for each specific purpose (detection, quantification and genotyping) are also available, all of which are typically based on polymerase chain reaction (PCR) targeting the HCV 5′ untranslated region (5′UTR). This study was performed to develop and validate a complete serial laboratory assay that combines real-time nested reverse transcription-polymerase chain reaction (RT-PCR) and restriction fragment length polymorphism (RFLP) techniques for the complete molecular analysis of HCV (detection, genotyping and viral load) in clinical samples. Methods Published HCV sequences were compared to select specific primers, probe and restriction enzyme sites. An original real-time nested RT-PCR-RFLP assay was then developed and validated to detect, genotype and quantify HCV in plasma samples. Results The real-time nested RT-PCR data were linear and reproducible for HCV analysis in clinical samples. High correlations (> 0.97) were observed between samples with different viral loads and the corresponding read cycle (Ct - Cycle threshold), and this part of the assay had a wide dynamic range of analysis. Additionally, HCV genotypes 1, 2 and 3 were successfully distinguished using the RFLP method. Conclusions A complete serial molecular assay was developed and validated for HCV detection, quantification and genotyping.
Resumo:
Abstract Background: Metabolic syndrome (MetS) is associated with a higher risk of all-cause mortality. High-sensitivity C-reactive protein (hsCRP) is a prototypic marker of inflammation usually increased in MetS. Women with MetS-related diseases present higher hsCRP levels than men with MetS-related diseases, suggesting sex differences in inflammatory markers. However, it is unclear whether serum hsCRP levels are already increased in men and/or women with MetS risk factors and without overt diseases or under pharmacological treatment. Objective: To determine the impact of the number of MetS risk factors on serum hsCRP levels in women and men. Methods One hundred and eighteen subjects (70 men and 48 women; 36 ± 1 years) were divided into four groups according to the number of MetS risk factors: healthy group (CT; no risk factors), MetS ≤ 2, MetS = 3, and MetS ≥ 4. Blood was drawn after 12 hours of fasting for measurement of biochemical variables and hsCRP levels, which were determined by immunoturbidimetric assay. Results: The groups with MetS risk factors presented higher serum hsCRP levels when compared with the CT group (p < 0.02). There were no differences in hsCRP levels among groups with MetS risk factors (p > 0.05). The best linear regression model to explain the association between MetS risk factors and hsCRP levels included waist circumference and HDL cholesterol (r = 0.40, p < 0.01). Women with MetS risk factors presented higher hsCRP levels when compared with men (psex < 0.01). Conclusions: Despite the absence of overt diseases and pharmacological treatment, subjects with MetS risk factors already presented increased hsCRP levels, which were significantly higher in women than men at similar conditions.
Resumo:
Dacron (polyethylenetherephthalate) is proposed as a matrix for dot-ELISA procedures, as an alternative to nitrocellulose. Plates of dacron were partially hydrazinolyzed and hydrazide groups introduced were converted to azide groups. The derivative dacron-antigen was covalently linked on to the plates through these azide groups. The derivative dacron-antigen was exaustively washed according to CROOK and antigen was still fixed onto the plates. Protein F1A purified from Yersinia pestis was used as a model. Triration of sera from immunized and non immunized rabbits against this protein was carried out by employing the dot-ELISA method. No significant difference was observed using dacron-antigen and nitrocellulose-antigen preparations. However, both procedures showed to have a significant better performance in comparasion with the passive hemagglutination method. The specificity and reproductibility of the dot-ELISA assay using both preparations showed a similar behaviour. Nitrocellulose preparation was stable at 4ºC, 28ºC and -20ºC for 90 days, whereas the dacron-antigen derivative was stable only when stored at 4ºC. Dacron-antigen derivative could be re-used when the spot developing was proceeded using 4-chloro-1-naphtol as substrate.