8 resultados para Project management -- Computer programs -- TFC
em Scielo Saúde Pública - SP
Resumo:
The use of water-sensitive papers is an important tool for assessing the quality of pesticide application on crops, but manual analysis is laborious and time-consuming. Thus, this study aimed to evaluate and compare the results obtained from four software programs for spray droplet analysis in different scanned images of water-sensitive papers. After spraying, papers with four droplet deposition patterns (varying droplet spectra and densities) were analyzed manually and by means of the following computer programs: CIR, e-Sprinkle, DepositScan and Conta-Gotas. The diameter of the volume and number medians and the number of droplets per target area were studied. There is a strong correlation between the values measured using the different programs and the manual analysis, but there is a great difference between the numerical values measured for the same paper. Thus, it is not advisable to compare results obtained from different programs.
Resumo:
Objective Investigating the educational technologies developed for promoting cardiovascular health in adults. Method Integrative review carried out in the databases of PubMed, SciELO and LILACS, with 15 articles selected. Results Over half (60%) of the studies were randomized clinical trials. The developed educational technologies were programs involving three strategies, with duration of one year, use of playful technologies with storytelling, computer programs or software for smartphones, and electronic brochure. These technologies resulted in reduction of blood pressure, weight, waist circumference, decreased hospitalizations and increased years of life. Conclusion The studies with better impact on the cardiovascular health of adults were those who brought the technology in the form of program and duration of one year.
Resumo:
In this paper we describe three computer programs in Basic language about the Fourier transform (FFT) which are available in the Internet site http://artemis.ffclrp.usp.br/SoftwareE.htm (in English) or http://artemis.ffclrp.usp.br/softwareP.htm (in Portuguese) since October 1998. Those are addresses to the Web Page of our Laboratory of Organic Synthesis. The programs can be downloaded and used by anyone who is interested on the subject. The texts, menus and captions in the programs are written in English.
Resumo:
Neural Networks are a set of mathematical methods and computer programs designed to simulate the information process and the knowledge acquisition of the human brain. In last years its application in chemistry is increasing significantly, due the special characteristics for model complex systems. The basic principles of two types of neural networks, the multi-layer perceptrons and radial basis functions, are introduced, as well as, a pruning approach to architecture optimization. Two analytical applications based on near infrared spectroscopy are presented, the first one for determination of nitrogen content in wheat leaves using multi-layer perceptrons networks and second one for determination of BRIX in sugar cane juices using radial basis functions networks.
Resumo:
Molecular Modeling is an important tool in drug design and it is very useful to predict biological activity from a library of compounds. A wide variety of computer programs and methods have been developed to visualize the tridimensional geometry and calculate physical properties of drugs. In this work, we describe a practical approach of molecular modeling as a powerful tool to study structure-activity relationships of drugs, including some antibacterials, hormones, cholinergic and adrenergic agents. At first, the students learn how to draw 3D structures and use them to perform conformational and molecular analysis. Thus, they compare drugs with similar pharmacological activity by superimposing one structure on the top of another and evaluate the geometry and physical properties.
Resumo:
For some years, Chemistry teachers have used scientific visualization software of molecular models in computing rooms and chemistry laboratories for educational purposes. However, its application in classrooms has been limited. This article describes the integration and use of computer programs for scientific molecular visualization in a traditional classroom. We consider that the improvement of technical aspects of their application and use (usability) has a direct effect on students' understanding of molecular structures (including students' extrinsic motivation), among other factors. Consequently, we developed a guide for the integration of hardware and software of molecular visualization for its use in the classroom.
Resumo:
We report a didactic experience in teaching Pearson's theory (HSAB) to graduate students in organic chemistry. This approach was based on teaching students how to use computer programs to calculate frontier orbitals (HOMO-LUMO). The suggested level of calculation was a semi-empiric PM3, proving to be efficient for obtaining robust and fast numerical results that can be performed easily in the classroom. We described a practical computational exercise and asked students to compare these numerical data with qualitative analysis using valence bond theory. A comprehensive solution of this exercise is presented, aiming to support teachers in their lessons.
Resumo:
BACKGROUND: Simulation techniques are spreading rapidly in medicine. Suc h resources are increasingly concentrated in Simulation Laboratories. The MSRP-USP is structuring such a laboratory and is interested in the prevalence of individual initiatives that could be centralized there. The MSRP-USP currently has five full-curriculum courses in the health sciences: Medicine, Speech Therapy, Physical Therapy, Nutrition, and Occupational Therapy, all consisting of core disciplines. GOAL: To determine the prevalence of simulation techniques in the regular courses at MSRP-USP. METHODS: Coordinators of disciplines in the various courses were interviewed using a specifically designed semi-structured questionnaire, and all the collected data were stored in a dedicated database. The disciplines were grouped according to whether they used (GI) or did not use (GII) simulation resources. RESULTS AND DISCUSSION: 256 disciplines were analyzed, of which only 18.3% used simulation techniques, varying according to course: Medicine (24.7.3%), Occupational Therapy (23.0%), Nutrition (15.9%), Physical Therapy (9.8%), and Speech Therapy (9.1%). Computer simulation programs predominated (42.5%) in all five courses. The resources were provided mainly by MSRP-USP (56.3%), with additional funding coming from other sources based on individual initiatives. The same pattern was observed for maintenance. There was great interest in centralizing the resources in the new Simulation Laboratory in order to facilitate maintenance, but there was concern about training and access to the material. CONCLUSIONS: 1) The MSRP-USP simulation resources show low complexity and are mainly limited to computer programs; 2) Use of simulation varies according to course, and is most prevalent in Medicine; 3) Resources are scattered across several locations, and their acquisition and maintenance depend on individual initiatives rather than central coordination or curricular guidelines