3 resultados para Programmable Automats
em Scielo Saúde Pública - SP
Resumo:
A microcontrolled, portable and inexpensive photometer is described. It uses six light-emitting diodes (LEDs) as radiation sources and a phototransistor as detector, as well as a microcontroller (PIC - Programmable Controller of Interruption). This device provided total autonomy to the proposed photometer, which was successfully applied to determination of Fe2+ in ferrous syrups and of seven clinical biochemical parameters. As the components are cheap (~U$30.00) and easy to find, the proposed photometer is an economical alternative for routine chemical analyses in small laboratories, for research and teaching. Being portable and microcontrolled, it allows doing field chemical analyses.
Resumo:
This work is a study of the implementation of a classical controller using a tuning method referred to as IMC (Internal Model Control) and aimed at the reduction of electrical energy consumption by the appropriate relation between energy consumption and the cooling time with forced air. The supervisory system installed was able to manipulate the variable of frequency of the signal power of the exhaust fan engine (forced air module), to accelerate or decelerate the loss of heat from the product to be cooled by airflow variation that passes through the mass of the produce. The results demonstrated a reduction in energy consumption from 64% and an increase of only 8% in the cooling time to the system using PI/IMC (Proportional - Integral with IMC) tuning method compared with the system in its operating nominal condition. This PI/IMC control may be implemented directly in a frequency converter, without the need to purchase a computer or PLC (programmable logic controller) to run the dedicated application, increasing its economical viability.
Resumo:
It has been shown for several DNA probes that the recently introduced Fast-FISH (fluorescence in situ hybridization) technique is well suited for quantitative microscopy. For highly repetitive DNA probes the hybridization (renaturation) time and the number of subsequent washing steps were reduced considerably by omitting denaturing chemical agents (e.g., formamide). The appropriate hybridization temperature and time allow a clear discrimination between major and minor binding sites by quantitative fluorescence microscopy. The well-defined physical conditions for hybridization permit automatization of the procedure, e.g., by a programmable thermal cycler. Here, we present optimized conditions for a commercially available X-specific a-satellite probe. Highly fluorescent major binding sites were obtained for 74oC hybridization temperature and 60 min hybridization time. They were clearly discriminated from some low fluorescent minor binding sites on metaphase chromosomes as well as in interphase cell nuclei. On average, a total of 3.43 ± 1.59 binding sites were measured in metaphase spreads, and 2.69 ± 1.00 in interphase nuclei. Microwave activation for denaturation and hybridization was tested to accelerate the procedure. The slides with the target material and the hybridization buffer were placed in a standard microwave oven. After denaturation for 20 s at 900 W, hybridization was performed for 4 min at 90 W. The suitability of a microwave oven for Fast-FISH was confirmed by the application to a chromosome 1-specific a-satellite probe. In this case, denaturation was performed at 630 W for 60 s and hybridization at 90 W for 5 min. In all cases, the results were analyzed quantitatively and compared to the results obtained by Fast-FISH. The major binding sites were clearly discriminated by their brightness