12 resultados para Process control automation device industry
em Scielo Saúde Pública - SP
Resumo:
The RID assay is one of the in vitro methods used for in-process control in the production of rabies vaccines for veterinary use. It has been shown to be very useful for determining antigen concentration in the final bulk product. The work presented in this paper, including the production and standardization of candidate standard reagents for use in the Radial Immunodiffusion Assay (RID) was carried out at the Pan American Institute for Food Protection and Zoonoses (INPPAZ/PAHO/WHO). The study was completed with the cooperation of the Faculty of Veterinary Sciences, National University of La Plata (NULP), Argentina, where the validation of the proposed standards and the quality control of samples from 28 different batches of rabies vaccines produced with Pasteur strain rabies virus (PV) in BHK cells were performed. The activity of the vaccines was determined by in vivo (NIH) and in vitro (RID)assays. The results of the candidate reagents for the reagent standardization tests showed stability, sensitivity and reproducibility. The Relative Potency the 1.2 between the problem vaccines and the reference vaccine was estimated by variance and regression analysis. The results of our validation study show that the INPPAZ (PAHO/WHO) is capable of producing and distributing the above-mentioned standard reagents, as well as of providing support for the incorporation of the RID technique (sensitive, rapid and inexpensive) to the laboratories that manufacture rabies vaccines in Latin America and the Caribbean.
Resumo:
Process Analytical Chemistry (PAC) is an important and growing area in analytical chemistry, that has received little attention in academic centers devoted to the gathering of knowledge and to optimization of chemical processes. PAC is an area devoted to optimization and knowledge acquisition of chemical processes, to reducing costs and wastes and to making an important contribution to sustainable development. The main aim of this review is to present to the Brazilian community the development and state of the art of PAC, discussing concepts, analytical techniques currently employed in the industry and some applications.
Resumo:
The irrigation management based on the monitoring of the soil water content allows for the minimization of the amount of water applied, making its use more efficient. Taking into account these aspects, in this work, a sensor for measuring the soil water content was developed to allow real time automation of irrigation systems. This way, problems affecting crop yielding such as irregularities in the time to turn on or turn off the pump, and excess or deficit of water can be solved. To develop the sensors were used stainless steel rods, resin, and insulating varnish. The sensors measuring circuit was based on a microcontroller, which gives its output signal in the digital format. The sensors were calibrated using soil of the type Quartzarenic Neosoil. A third order polynomial model was fitted to the experimental data between the values of water content corresponding to the field capacity and the wilting point to correlate the soil water content obtained by the oven standard method with those measured by the electronic circuit, with a coefficient of determination of 93.17%, and an accuracy in the measures of ±0.010 kg kg-1. Based on the results, it was concluded that the sensor and its implemented measuring circuit can be used in the automation process of irrigation systems.
Resumo:
The process of cold storage chambers contributes largely to the quality and longevity of stored products. In recent years, it has been intensified the study of control strategies in order to decrease the temperature change inside the storage chamber and to reduce the electric power consumption. This study has developed a system for data acquisition and process control, in LabVIEW language, to be applied in the cooling system of a refrigerating chamber of 30m³. The use of instrumentation and the application developed fostered the development of scientific experiments, which aimed to study the dynamic behavior of the refrigeration system, compare the performance of control strategies and the heat engine, even due to the controlled temperature, or to the electricity consumption. This system tested the strategies for on-off control, PID and fuzzy. Regarding power consumption, the fuzzy controller showed the best result, saving 10% when compared with other tested strategies.
Resumo:
ABSTRACT Statistical process control in mechanized farming is a new way to assess operation quality. In this sense, we aimed to compare three statistical process control tools applied to losses in sugarcane mechanical harvesting to determine the best control chart template for this quality indicator. Losses were daily monitored in farms located within Triângulo Mineiro region, in Minas Gerais state, Brazil. They were carried over a period of 70 days in the 2014 harvest. At the end of the evaluation period, 194 samples were collected in total for each type of loss. The control charts used were individual values chart, moving average and exponentially weighted moving average. The quality indicators assessed during sugarcane harvest were the following loss types: full grinding wheel, stumps, fixed piece, whole cane, chips, loose piece and total losses. The control chart of individual values is the best option for monitoring losses in sugarcane mechanical harvesting, as it is of easier result interpretation, in comparison to the others.
Resumo:
Soil penetration resistance (PR) and the tensile strength of aggregates (TS) are commonly used to characterize the physical and structural conditions of agricultural soils. This study aimed to assess the functionality of a dynamometry apparatus by linear speed and position control automation of its mobile base to measure PR and TS. The proposed equipment was used for PR measurement in undisturbed samples of a clayey "Nitossolo Vermelho eutroférrico" (Kandiudalfic Eutrudox) under rubber trees sampled in two positions (within and between rows). These samples were also used to measure the volumetric soil water content and bulk density, and determine the soil resistance to penetration curve (SRPC). The TS was measured in a sandy loam "Latossolo Vermelho distrófico" (LVd) - Typic Haplustox - and in a very clayey "Nitossolo Vermelho distroférrico" (NVdf) - Typic Paleudalf - under different uses: LVd under "annual crops" and "native forest", NVdf under "annual crops" and "eucalyptus plantation" (> 30 years old). To measure TS, different strain rates were applied using two dynamometry testing devices: a reference machine (0.03 mm s-1), which has been widely used in other studies, and the proposed equipment (1.55 mm s-1). The determination coefficient values of the SRPC were high (R² > 0.9), regardless of the sampling position. Mean TS values in LVd and NVdf obtained with the proposed equipment did not differ (p > 0.05) from those of the reference testing apparatus, regardless of land use and soil type. Results indicate that PR and TS can be measured faster and accurately by the proposed procedure.
Resumo:
The tanning process in the leather industry generates very high quantities of chromium-containing solid waste ("wet blue" leather). Environmental concerns and escalating landfill-costs are becoming increasingly serious problems for the leather industry and an alternative disposal is needed. In this work, we are presenting a novel application for this solid waste, which is the removal of organic contaminants from aqueous-solution. The adsorption isotherm of "wet blue" leather waste from the AUREA tanning company in Erechim-RS (Brazil) showed that this material presents high adsorption capacities of the reactive textile dyes.
Resumo:
In recent years, several studies have been developed in Brazil to produce biodegradable materials. A particular family of bacterial polymers, the polyhydroxyalkanoates (PHA), has received special attention. PHAs are thermoplastic, biodegradable, biocompatible, are synthesised from renewable resources and can substitute petrochemical plastics in some applications. Different aspects have been focused to increase productivity and to reduce the cost of PHA production: bacterial improvement, use of industrial by-products as raw material, bioreactor design, process operation strategies, downstream process, mathematical modelling, polymer characterisation, application and biodegradability of blends. A production process was transferred to industry and studies to produce new PHA by controlling monomer composition are in progress. All these aspects are presented in this review.
Resumo:
The mechanical harvesting is an important stage in the production process of soybeans and, in this process; the loss of a significant number of grains is common. Despite the existence of mechanisms to monitor these losses, it is still essential to use sampling methods to quantify them. Assuming that the size of the sample area affects the reliability and variability between samples in quantifying losses, this paper aimed to analyze the variability and feasibility of using different sizes of sample area (1, 2 and 3 m²) in quantifying losses in the mechanical harvesting of soybeans. Were sampled 36 sites and the cutting losses, losses by other mechanisms of the combine and total losses were evaluated, as well as the water content in seeds, straw distribution and crop productivity. Data were subjected to statistical analysis (descriptive statistics and analysis of variance) and Statistical Control Process (SCP). The coefficients of variation were similar for the three frames available. Combine losses showed stable behavior, whereas cutting losses and total losses showed unstable behavior. The frame size did not affect the quantification and variability of losses in the mechanical harvesting of soybeans, thus a frame of 1 m² can be used for determining losses.
Resumo:
The current study used statistical methods of quality control to evaluate the performance of a sewage treatment station. The concerned station is located in Cascavel city, Paraná State. The evaluated parameters were hydrogenionic potential, settleable solids, total suspended solids, chemical oxygen demand and biochemical oxygen demand in five days. Statistical analysis was performed through Shewhart control charts and process capability ratio. According to Shewhart charts, only the BOD(5.20) variable was under statistical control. Through capability ratios, we observed that except for pH the sewage treatment station is not capable to produce effluents under characteristics that fulfill specifications or standard launching required by environmental legislation.
Resumo:
Chicken embryos kept in culture medium were bombarded using a high helium gas pressure biolistic device. To optimize the factors that affect transformation efficiency, the lacZ gene under control of the human cytomegalovirus immediate early enhancer/promoter was used as a reporter gene. There was an inverse relationship between survival rate and transformation efficiency. The best conditions obtained for high embryo survival and high transformation efficiency were achieved with 800 psi helium gas pressure, 500 mmHg vacuum, gold particles, an 8 cm DNA-coated microparticle flying distance to the embryo and embryo placement 0.5 cm from the center of the particle dispersion cone. Under these conditions, transformation efficiency was 100%, survival rate 25% and the number of expression units in the embryo body cells ranged from 100 to 1,000. Expression of green fluorescent protein was also detected in embryos bombarded under optimal conditions. Based on the results obtained, the biolistic process can be considered an efficient method for the transformation of chicken embryos and therefore can be used as a model system to study transient gene expression and tissue-specific promoters.
Resumo:
This study aimed to verify the hygienic-sanitary working practices and to create and implement a Hazard Analysis Critical Control Point (HACCP) in two lobster processing industries in Pernambuco State, Brazil. The industries studied process frozen whole lobsters, frozen whole cooked lobsters, and frozen lobster tails for exportation. The application of the hygienic-sanitary checklist in the industries analyzed achieved conformity rates over 96% to the aspects evaluated. The use of the Hazard Analysis Critical Control Point (HACCP) plan resulted in the detection of two critical control points (CCPs) including the receiving and classification steps in the processing of frozen lobster and frozen lobster tails, and an additional critical control point (CCP) was detected during the cooking step of processing of the whole frozen cooked lobster. The proper implementation of the Hazard Analysis Critical Control Point (HACCP) plan in the lobster processing industries studied proved to be the safest and most cost-effective method to monitor each critical control point (CCP) hazards.