5 resultados para Probabilistic Algorithms
em Scielo Saúde Pública - SP
Resumo:
OBJECTIVE: To evaluate the potential advantages and limitations of the use of the Brazilian hospital admission authorization forms database and the probabilistic record linkage methodology for the validation of reported utilization of hospital care services in household surveys. METHODS: A total of 2,288 households interviews were conducted in the county of Duque de Caxias, Brazil. Information on the occurrence of at least one hospital admission in the year preceding the interview was obtained from a total of 10,733 household members. The 130 records of household members who reported at least one hospital admission in a public hospital were linked to a hospital database with 801,587 records, using an automatic probabilistic approach combined with an extensive clerical review. RESULTS: Seventy-four (57%) of the 130 household members were identified in the hospital database. Yet only 60 subjects (46%) showed a record of hospitalization in the hospital database in the study period. Hospital admissions due to a surgery procedure were significantly more likely to have been identified in the hospital database. The low level of concordance seen in the study can be explained by the following factors: errors in the linkage process; a telescoping effect; and an incomplete record in the hospital database. CONCLUSIONS: The use of hospital administrative databases and probabilistic linkage methodology may represent a methodological alternative for the validation of reported utilization of health care services, but some strategies should be employed in order to minimize the problems related to the use of this methodology in non-ideal conditions. Ideally, a single identifier, such as a personal health insurance number, and the universal coverage of the database would be desirable.
Resumo:
Among the challenges of pig farming in today's competitive market, there is factor of the product traceability that ensures, among many points, animal welfare. Vocalization is a valuable tool to identify situations of stress in pigs, and it can be used in welfare records for traceability. The objective of this work was to identify stress in piglets using vocalization, calling this stress on three levels: no stress, moderate stress, and acute stress. An experiment was conducted on a commercial farm in the municipality of Holambra, São Paulo State , where vocalizations of twenty piglets were recorded during the castration procedure, and separated into two groups: without anesthesia and local anesthesia with lidocaine base. For the recording of acoustic signals, a unidirectional microphone was connected to a digital recorder, in which signals were digitized at a frequency of 44,100 Hz. For evaluation of sound signals, Praat® software was used, and different data mining algorithms were applied using Weka® software. The selection of attributes improved model accuracy, and the best attribute selection was used by applying Wrapper method, while the best classification algorithms were the k-NN and Naive Bayes. According to the results, it was possible to classify the level of stress in pigs through their vocalization.
Resumo:
This study aimed to describe the probabilistic structure of the annual series of extreme daily rainfall (Preabs), available from the weather station of Ubatuba, State of São Paulo, Brazil (1935-2009), by using the general distribution of extreme value (GEV). The autocorrelation function, the Mann-Kendall test, and the wavelet analysis were used in order to evaluate the presence of serial correlations, trends, and periodical components. Considering the results obtained using these three statistical methods, it was possible to assume the hypothesis that this temporal series is free from persistence, trends, and periodicals components. Based on quantitative and qualitative adhesion tests, it was found that the GEV may be used in order to quantify the probabilities of the Preabs data. The best results of GEV were obtained when the parameters of this function were estimated using the method of maximum likelihood. The method of L-moments has also shown satisfactory results.
Resumo:
We compared the cost-benefit of two algorithms, recently proposed by the Centers for Disease Control and Prevention, USA, with the conventional one, the most appropriate for the diagnosis of hepatitis C virus (HCV) infection in the Brazilian population. Serum samples were obtained from 517 ELISA-positive or -inconclusive blood donors who had returned to Fundação Pró-Sangue/Hemocentro de São Paulo to confirm previous results. Algorithm A was based on signal-to-cut-off (s/co) ratio of ELISA anti-HCV samples that show s/co ratio ³95% concordance with immunoblot (IB) positivity. For algorithm B, reflex nucleic acid amplification testing by PCR was required for ELISA-positive or -inconclusive samples and IB for PCR-negative samples. For algorithm C, all positive or inconclusive ELISA samples were submitted to IB. We observed a similar rate of positive results with the three algorithms: 287, 287, and 285 for A, B, and C, respectively, and 283 were concordant with one another. Indeterminate results from algorithms A and C were elucidated by PCR (expanded algorithm) which detected two more positive samples. The estimated cost of algorithms A and B was US$21,299.39 and US$32,397.40, respectively, which were 43.5 and 14.0% more economic than C (US$37,673.79). The cost can vary according to the technique used. We conclude that both algorithms A and B are suitable for diagnosing HCV infection in the Brazilian population. Furthermore, algorithm A is the more practical and economical one since it requires supplemental tests for only 54% of the samples. Algorithm B provides early information about the presence of viremia.
Resumo:
Our objective is to evaluate the accuracy of three algorithms in differentiating the origins of outflow tract ventricular arrhythmias (OTVAs). This study involved 110 consecutive patients with OTVAs for whom a standard 12-lead surface electrocardiogram (ECG) showed typical left bundle branch block morphology with an inferior axis. All the ECG tracings were retrospectively analyzed using the following three recently published ECG algorithms: 1) the transitional zone (TZ) index, 2) the V2 transition ratio, and 3) V2 R wave duration and R/S wave amplitude indices. Considering all patients, the V2 transition ratio had the highest sensitivity (92.3%), while the R wave duration and R/S wave amplitude indices in V2 had the highest specificity (93.9%). The latter finding had a maximal area under the ROC curve of 0.925. In patients with left ventricular (LV) rotation, the V2 transition ratio had the highest sensitivity (94.1%), while the R wave duration and R/S wave amplitude indices in V2 had the highest specificity (87.5%). The former finding had a maximal area under the ROC curve of 0.892. All three published ECG algorithms are effective in differentiating the origin of OTVAs, while the V2 transition ratio, and the V2 R wave duration and R/S wave amplitude indices are the most sensitive and specific algorithms, respectively. Amongst all of the patients, the V2 R wave duration and R/S wave amplitude algorithm had the maximal area under the ROC curve, but in patients with LV rotation the V2 transition ratio algorithm had the maximum area under the ROC curve.