37 resultados para Predictive Models
em Scielo Saúde Pública - SP
Resumo:
AbstractBackground:30-40% of cardiac resynchronization therapy cases do not achieve favorable outcomes.Objective:This study aimed to develop predictive models for the combined endpoint of cardiac death and transplantation (Tx) at different stages of cardiac resynchronization therapy (CRT).Methods:Prospective observational study of 116 patients aged 64.8 ± 11.1 years, 68.1% of whom had functional class (FC) III and 31.9% had ambulatory class IV. Clinical, electrocardiographic and echocardiographic variables were assessed by using Cox regression and Kaplan-Meier curves.Results:The cardiac mortality/Tx rate was 16.3% during the follow-up period of 34.0 ± 17.9 months. Prior to implantation, right ventricular dysfunction (RVD), ejection fraction < 25% and use of high doses of diuretics (HDD) increased the risk of cardiac death and Tx by 3.9-, 4.8-, and 5.9-fold, respectively. In the first year after CRT, RVD, HDD and hospitalization due to congestive heart failure increased the risk of death at hazard ratios of 3.5, 5.3, and 12.5, respectively. In the second year after CRT, RVD and FC III/IV were significant risk factors of mortality in the multivariate Cox model. The accuracy rates of the models were 84.6% at preimplantation, 93% in the first year after CRT, and 90.5% in the second year after CRT. The models were validated by bootstrapping.Conclusion:We developed predictive models of cardiac death and Tx at different stages of CRT based on the analysis of simple and easily obtainable clinical and echocardiographic variables. The models showed good accuracy and adjustment, were validated internally, and are useful in the selection, monitoring and counseling of patients indicated for CRT.
Resumo:
Is it possible to build predictive models (PMs) of soil particle-size distribution (psd) in a region with complex geology and a young and unstable land-surface? The main objective of this study was to answer this question. A set of 339 soil samples from a small slope catchment in Southern Brazil was used to build PMs of psd in the surface soil layer. Multiple linear regression models were constructed using terrain attributes (elevation, slope, catchment area, convergence index, and topographic wetness index). The PMs explained more than half of the data variance. This performance is similar to (or even better than) that of the conventional soil mapping approach. For some size fractions, the PM performance can reach 70 %. Largest uncertainties were observed in geologically more complex areas. Therefore, significant improvements in the predictions can only be achieved if accurate geological data is made available. Meanwhile, PMs built on terrain attributes are efficient in predicting the particle-size distribution (psd) of soils in regions of complex geology.
Resumo:
Abstract: INTRODUCTION: In Brazil, culling of seropositive dogs is one of the recommended strategies to control visceral leishmaniasis. Since infectiousness is correlated with clinical signs, control measures targeting symptomatic dogs could be more effective. METHODS: A cross-sectional study was carried out among 1,410 dogs, predictive models were developed based on clinical signs and an indirect immunofluorescence antibody test. RESULTS: The validated predictive model showed sensitivity and specificity of 86.5% and 70.0%, respectively. CONCLUSIONS: Predictive models could be used as tools to aid control programs in focusing on a smaller fraction of dogs contributing more to infection dissemination.
Resumo:
Soil properties have an enormous impact on economic and environmental aspects of agricultural production. Quantitative relationships between soil properties and the factors that influence their variability are the basis of digital soil mapping. The predictive models of soil properties evaluated in this work are statistical (multiple linear regression-MLR) and geostatistical (ordinary kriging and co-kriging). The study was conducted in the municipality of Bom Jardim, RJ, using a soil database with 208 sampling points. Predictive models were evaluated for sand, silt and clay fractions, pH in water and organic carbon at six depths according to the specifications of the consortium of digital soil mapping at the global level (GlobalSoilMap). Continuous covariates and categorical predictors were used and their contributions to the model assessed. Only the environmental covariates elevation, aspect, stream power index (SPI), soil wetness index (SWI), normalized difference vegetation index (NDVI), and b3/b2 band ratio were significantly correlated with soil properties. The predictive models had a mean coefficient of determination of 0.21. Best results were obtained with the geostatistical predictive models, where the highest coefficient of determination 0.43 was associated with sand properties between 60 to 100 cm deep. The use of a sparse data set of soil properties for digital mapping can explain only part of the spatial variation of these properties. The results may be related to the sampling density and the quantity and quality of the environmental covariates and predictive models used.
Resumo:
OBJECTIVE To analyze the prevalence of individuals at risk of dependence and its associated factors.METHODS The study was based on data from the Catalan Health Survey, Spain conducted in 2010 and 2011. Logistic regression models from a random sample of 3,842 individuals aged ≥ 15 years were used to classify individuals according to the state of their personal autonomy. Predictive models were proposed to identify indicators that helped distinguish dependent individuals from those at risk of dependence. Variables on health status, social support, and lifestyles were considered.RESULTS We found that 18.6% of the population presented a risk of dependence, especially after age 65. Compared with this group, individuals who reported dependence (11.0%) had difficulties performing activities of daily living and had to receive support to perform them. Habits such as smoking, excessive alcohol consumption, and being sedentary were associated with a higher probability of dependence, particularly for women.CONCLUSIONS Difficulties in carrying out activities of daily living precede the onset of dependence. Preserving personal autonomy and function without receiving support appear to be a preventive factor. Adopting an active and healthy lifestyle helps reduce the risk of dependence.
Resumo:
ABSTRACT Biomass is a fundamental measure for understanding the structure and functioning (e.g. fluxes of energy and nutrients in the food chain) of aquatic ecosystems. We aim to provide predictive models to estimate the biomass of Triplectides egleri Sattler, 1963, in a stream in Central Amazonia, based on body and case dimensions. We used body length, head-capsule width, interocular distance and case length and width to derive biomass estimations. Linear, exponential and power regression models were used to assess the relationship between biomass and body or case dimensions. All regression models used in the biomass estimation of T. egleri were significant. The best fit between biomass and body or case dimensions was obtained using the power model, followed by the exponential and linear models. Body length provided the best estimate of biomass. However, the dimensions of sclerotized structures (interocular distance and head-capsule width) also provided good biomass predictions, and may be useful in estimating biomass of preserved and/or damaged material. Case width was the dimension of the case that provided the best estimate of biomass. Despite the low relation, case width may be useful in studies that require low stress on individuals.
Resumo:
Digital information generates the possibility of a high degree of redundancy in the data available for fitting predictive models used for Digital Soil Mapping (DSM). Among these models, the Decision Tree (DT) technique has been increasingly applied due to its capacity of dealing with large datasets. The purpose of this study was to evaluate the impact of the data volume used to generate the DT models on the quality of soil maps. An area of 889.33 km² was chosen in the Northern region of the State of Rio Grande do Sul. The soil-landscape relationship was obtained from reambulation of the studied area and the alignment of the units in the 1:50,000 scale topographic mapping. Six predictive covariates linked to the factors soil formation, relief and organisms, together with data sets of 1, 3, 5, 10, 15, 20 and 25 % of the total data volume, were used to generate the predictive DT models in the data mining program Waikato Environment for Knowledge Analysis (WEKA). In this study, sample densities below 5 % resulted in models with lower power of capturing the complexity of the spatial distribution of the soil in the study area. The relation between the data volume to be handled and the predictive capacity of the models was best for samples between 5 and 15 %. For the models based on these sample densities, the collected field data indicated an accuracy of predictive mapping close to 70 %.
Resumo:
Escherichia coli, as a model microorganism, was treated in phosphate-buffered saline under high hydrostatic pressure between 100 and 300 MPa, and the inactivation dynamics was investigated from the viewpoint of predictive microbiology. Inactivation data were curve fitted by typical predictive models: logistic, Gompertz and Weibull functions. Weibull function described the inactivation curve the best. Two parameters of Weibull function were calculated for each holding pressure and their dependence on holding pressure was obtained by interpolation. With the interpolated parameters, inactivation curves were simulated and compared with the experimental data sets.
Resumo:
The chemical composition of apple juices may be used to discriminate between the varieties for consumption and those for raw material. Fuji and Gala have a chemical pattern that can be used for this classification. Multivariate methods correlate independent continuous chemical descriptors with the categorical apple variety. Three main descriptors of apple juice were selected: malic acid, total reducing sugar and total phenolic compounds. A chemometric approach, employing PCA and SIMCA, was used to classify apple juice samples. PCA was performed with 24 juices from Fuji and Gala, and SIMCA, with 15 juices. The exploratory and predictive models recognized 88% and 64%, respectively, as belonging to a mixed domain. The apple juice from commercial fruits shows a pattern related to cv. Fuji and Gala with boundaries from 0.18 to 0.389 g.100 mL-1 (malic acid), from 8.65 to 15.18 g.100 mL-1 (total reducing sugar) and from 100 to 400 mg.L-1 (total phenolic compounds), but such boundaries were slightly shorter in the remaining set of commercial apple juices, specifically from 0.16 to 0.36 g.100 mL-1, from 9.25 to 15.5 g.100 mL-1 and from 180 to 606 mg.L-1 for acidity, reducing sugar and phenolic compounds, respectively, representing the acid, sweet and bitter tastes.
Resumo:
OBJECTIVE: To investigate preoperative predictive factors of severe perioperative intercurrent events and in-hospital mortality in coronary artery bypass graft (CABG) surgery and to develop specific models of risk prediction for these events, mainly those that can undergo changes in the preoperative period. METHODS: We prospectively studied 453 patients who had undergone CABG. Factors independently associated with the events of interest were determined with multiple logistic regression and Cox proportional hazards regression model. RESULTS: The mortality rate was 11.3% (51/453), and 21.2% of the patients had 1 or more perioperative intercurrent events. In the final model, the following variables remained associated with the risk of intercurrent events: age ³ 70 years, female sex, hospitalization via SUS (Sistema Único de Saúde - the Brazilian public health system), cardiogenic shock, ischemia, and dependence on dialysis. Using multiple logistic regression for in-hospital mortality, the following variables participated in the model of risk prediction: age ³ 70 years, female sex, hospitalization via SUS, diabetes, renal dysfunction, and cardiogenic shock. According to the Cox regression model for death within the 7 days following surgery, the following variables remained associated with mortality: age ³ 70 years, female sex, cardiogenic shock, and hospitalization via SUS. CONCLUSION: The aspects linked to the structure of the Brazilian health system, such as factors of great impact on the results obtained, indicate that the events investigated also depend on factors that do not relate to the patient's intrinsic condition.
Resumo:
Phytotherapies have offered alternative sources of therapy for migraine and gained much importance in prophylactic treatment. Sapindus trifoliatus is a medium-sized deciduous tree growing wild in south India that belongs to the family Sapindaceae. The pericarp is reported for various medicinal properties. A thick aqueous solution of the pericarp is used for the treatment of hemicrania, hysteria or epilepsy in folklore medicine. We have investigated the antihyperalgesic effects of the lyophilized aqueous extract of S. trifoliatus in animal models predictive of experimental migraine models using morphine withdrawal-induced hyperalgesia on the hot-plate test and on 0.3% acetic acid-induced abdominal constrictions in adult male Swiss albino mice. The extract significantly (N = 10, P < 0.05) increased the licking latency in the hot-plate test when administered ip at 10 mg/kg (6.70 ± 0.39 s in saline control vs 18.76 ± 0.96 s in S. trifoliatus-treated animals) and significantly (N = 10, P < 0.001) reduced the abdominal constrictions when administered ip at 2 and 10 mg/kg (40.20 ± 1.36 in saline control vs 30.20 ± 1.33 and 23.00 ± 0.98 for 2 and 10 mg/kg, ip, respectively, in S. trifoliatus-treated animals). Furthermore, when administered ip at 20 and 100 mg/kg, the extract significantly (N = 10, P < 0.05) inhibited the apomorphine-induced climbing behavior in mice (climbing duration 15.75 ± 5.0 min for saline control vs 11.4 ± 1.28 and 3.9 ± 1.71 min for 20 and 100 mg/kg, respectively, in S. trifoliatus-treated animals). In receptor radioligand-binding studies, the extract exhibited affinity towards D2 receptors. The findings suggest that dopamine D2 antagonism could be the mechanism involved in the antihyperalgesic activity of the aqueous extract of S. trifoliatus.
Resumo:
Prenatal immune challenge (PIC) in pregnant rodents produces offspring with abnormalities in behavior, histology, and gene expression that are reminiscent of schizophrenia and autism. Based on this, the goal of this article was to review the main contributions of PIC models, especially the one using the viral-mimetic particle polyriboinosinic-polyribocytidylic acid (poly-I:C), to the understanding of the etiology, biological basis and treatment of schizophrenia. This systematic review consisted of a search of available web databases (PubMed, SciELO, LILACS, PsycINFO, and ISI Web of Knowledge) for original studies published in the last 10 years (May 2001 to October 2011) concerning animal models of PIC, focusing on those using poly-I:C. The results showed that the PIC model with poly-I:C is able to mimic the prodrome and both the positive and negative/cognitive dimensions of schizophrenia, depending on the specific gestation time window of the immune challenge. The model resembles the neurobiology and etiology of schizophrenia and has good predictive value. In conclusion, this model is a robust tool for the identification of novel molecular targets during prenatal life, adolescence and adulthood that might contribute to the development of preventive and/or treatment strategies (targeting specific symptoms, i.e., positive or negative/cognitive) for this devastating mental disorder, also presenting biosafety as compared to viral infection models. One limitation of this model is the incapacity to model the full spectrum of immune responses normally induced by viral exposure.
Resumo:
The mortality rate of older patients with intertrochanteric fractures has been increasing with the aging of populations in China. The purpose of this study was: 1) to develop an artificial neural network (ANN) using clinical information to predict the 1-year mortality of elderly patients with intertrochanteric fractures, and 2) to compare the ANN's predictive ability with that of logistic regression models. The ANN model was tested against actual outcomes of an intertrochanteric femoral fracture database in China. The ANN model was generated with eight clinical inputs and a single output. ANN's performance was compared with a logistic regression model created with the same inputs in terms of accuracy, sensitivity, specificity, and discriminability. The study population was composed of 2150 patients (679 males and 1471 females): 1432 in the training group and 718 new patients in the testing group. The ANN model that had eight neurons in the hidden layer had the highest accuracies among the four ANN models: 92.46 and 85.79% in both training and testing datasets, respectively. The areas under the receiver operating characteristic curves of the automatically selected ANN model for both datasets were 0.901 (95%CI=0.814-0.988) and 0.869 (95%CI=0.748-0.990), higher than the 0.745 (95%CI=0.612-0.879) and 0.728 (95%CI=0.595-0.862) of the logistic regression model. The ANN model can be used for predicting 1-year mortality in elderly patients with intertrochanteric fractures. It outperformed a logistic regression on multiple performance measures when given the same variables.
Resumo:
The purpose of this study is to investigate the contribution of psychological variables and scales suggested by Economic Psychology in predicting individuals’ default. Therefore, a sample of 555 individuals completed a self-completion questionnaire, which was composed of psychological variables and scales. By adopting the methodology of the logistic regression, the following psychological and behavioral characteristics were found associated with the group of individuals in default: a) negative dimensions related to money (suffering, inequality and conflict); b) high scores on the self-efficacy scale, probably indicating a greater degree of optimism and over-confidence; c) buyers classified as compulsive; d) individuals who consider it necessary to give gifts to children and friends on special dates, even though many people consider this a luxury; e) problems of self-control identified by individuals who drink an average of more than four glasses of alcoholic beverage a day.