74 resultados para Pre-dawn leaf water potencial

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light and water are important factors that may limit the growth and development of higher plants. The aim of this study was to evaluate photosynthetic parameters and growth in seedlings of Bertholletia excelsa and Carapa guianensis in response to pre-acclimation to full sunlight and mild water stress. I used six independent pre-acclimation treatments (0, 90 (11h15-12h45), 180 (10h30-13h30), 360 (09h00-15h00), 540 (07h30-16h30) and 720 min (06h00-18h00)) varying the time of exposure to full sunlight (PFS) during 30 days, followed by whole-day outdoor exposure for 120 days. Before PFS, the plants were kept in a greenhouse at low light levels (0.8 mol m-2 day-1). The PFS of 0 min corresponded to plants constantly kept under greenhouse conditions. From the beginning to the end of the experiment, each PFS treatment was submitted to two water regimes: moderate water stress (MWS, pre-dawn leaf water potential (ΨL) of -500 to -700 kPa) and without water stress (WWS, ΨL of -300 kPa, soil kept at field capacity). Plants under MWS received only a fraction of the amount of water applied to the well-watered ones. At the end of the 120-day-period under outdoor conditions, I evaluated light saturated photosynthesis (Amax), stomatal conductance (g s), transpiration (E) and plant growth. Both Amax and g s were higher for all plants under the PFS treatment. Stem diameter growth rate and Amax were higher for C. guianensis subjected to MWS than in well-watered plants. The contrary was true for B. excelsa. The growth of seedlings was enhanced by exposure to full sunlight for 180 minutes in both species. However, plants of B. excelsa were sensitive to moderate water stress. The higher photosynthetic rates and faster growth of C. guianensis under full sun and moderate water stress make this species a promissory candidate to be tested in reforestation programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water relations of the tree species Myrsine umbellata Mart. ex A. DC., Dodonaea viscosa Jacq. and Erythroxylum argentinum O. E. Schulz, growing on a rock outcrop in the "Parque Estadual de Itapuã" (RS), were studied. Environmental (precipitation, temperature, soil water) and plant (water potential, vapor pressure deficit, stomatal conductance, transpiration, leaf specific hydraulic conductance, osmotic potential and cell wall elasticity) parameters were collected in five periods and pooled into two sets of data: wet and dry periods. Myrsine umbellata showed great stability of the plant parameters, including the maintenance of high pre-dawn (psiwpd) and mid-day (psiwmd) water potentials in the dry period (-0.48 and -1.12 MPa, respectively), suggesting the presence of a deep root system. Dodonaea viscosa and E. argentinum reached lower psiwpd (-1.41 and -1.97 MPa, respectively) and a greater degree of stomatal closure in the dry period, suggesting a shallower root system. Differential exposure to soil drought was also corroborated by differential drought effects on the whole-plant leaf specific hydraulic conductance (Gt). Correlation analysis pointed to weak correlations between psiwpd and g s. Erythroxylum argentinum was the only species to show osmotic adjustment in response to drought. It is suggested that M. umbellata has low tolerance to water deficits, adopting an avoidance behavior. The much lower values of psiw reached by D. viscosa and E. argentinum suggest a greater tolerance to drought by these species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT The expansion of the sugarcane industry in Brazil has intensified the mechanization of agriculture and caused effects on the soil physical quality. The purpose of this study was to evaluate the limiting water range and soil bearing capacity of a Latossolo Vermelho distroférrico típico (Rhodic Hapludox) under the influence of different tractor-trailers used in mechanical sugarcane harvesting. The experiment was arranged in a randomized block design with five replications. The treatments consisted of green sugarcane harvesting with: harvester without trailer (T1); harvester with two trailers with a capacity of 10 Mg each (T2); harvester with trailer with a capacity of 20 Mg (T3) and harvester and truck with trailer with a capacity of 20 Mg (10 Mg per compartment) (T4). The least limiting water range and soil bearing capacity were evaluated. The transport equipment to remove the harvested sugarcane from the field (trailer) at harvest decreased the least limiting water range, reducing the structural soil quality. The truck trailer caused the greatest impact on the soil physical properties studied. The soil load bearing capacity was unaffected by the treatments, since the pressure of the harvester (T1) exceeded the pre-consolidation pressure of the soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT Investigations into water potentials in the soil-plant system are of great relevance in environments with abiotic stresses, such as salinity and drought. An experiment was developed using bell pepper in a Neossolo Flúvico (Fluvent) irrigated with water of six levels of electrical conductivity (0, 1, 3, 5, 7 and 9 dS m-1) by using exclusively NaCl and by simulating the actual condition (using a mixture of salts). The treatments were arranged in a randomized block design, in a 6 × 2 factorial arrangement, with four replicates. Soil matric (Ψm) and osmotic (Ψo) potentials were determined 70 days after transplanting (DAT). Soil total potential was considered as the sum of Ψm and Ψo. Leaf water (obtained with the Scholander Chamber) and osmotic potentials were determined before sunrise (predawn) and at noon at 42 and 70 DAT. There were no significant differences between the salt sources used in the irrigation water for soil and plant water potentials. The supply of salts to the soil through irrigation water was the main factor responsible for the decrease in Ψo in the soil and in bell pepper leaves. The total potential of bell pepper at predawn reached values of -1.30 and -1.33 MPa at 42 and 70 DAT, respectively, when water of 9 dS m-1 was used in the irrigation. The total potential at noon reached -2.19 MPa. The soil subjected to the most saline treatment reached a water potential of -1.20 MPa at 70 DAT. There was no predawn equilibrium between the total water potentials of the soil and the plant, indicating that soil potential cannot be considered similar to that of the plant. The determination of the osmotic potential in the soil solution should not be neglected in saline soils, since it has strong influence on the calculation of the total potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to investigate the effect of water stress on N2 fixation and nodule structure of two common bean (Phaseolus vulgaris L.) cultivars Carioca and EMGOPA-201. Plants were harvested after five and eight days of water stress. Carioca had lower nodule dry weight on both water stress periods; shoot dry weight was lower at five days water stress and did not differ from control after eight days stress. Both cultivars had lower nitrogenase activity than control after five and eight days water stress. For both cultivars, after eight days stress bacteroid membranes were damaged. Carioca presented more pronounced damage to infected tissue, with host cell vacuolation and loss of the peribacteroid membrane at five days after stress; at eight days after stress, there was degradation of cytoplasm host cells and senescence of bacteroids, with their release into intercellular spaces. Intensity of immunogold-labeling of intercellular cortical glycoprotein with the monoclonal antibodies MAC 236/265 was different for both cultivars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to assess the effect of different periods of water stress before harvest of pepper-rosmarin (Lippia sidoides) on the contents of essential oil and flavonoids. The experiment was carried out during 270 days of cultivation, with drainage lysimeters, in a completely randomized block design with five treatments: 0, 2, 4, 6, and 8 days of water suppression before harvest, with four replicates. Fresh and dry matter yield, essential oil content, total flavonoids content, and water potential and temperature of leaves were determined. There was a decrease of approximately 50% in oil content and of 60% in total flavonoid content with the reduction of leaf water potential in 0.3 MPa. Essential oil is more sensitive to water stress than total flavonoids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: The objective of this work was to evaluate the feasibility of using physiological parameters for water deficit tolerance, as an auxiliary method for selection of upland rice genotypes. Two experiments - with or without water deficit - were carried out in Porangatu, in the state of Goiás, Brazil; the water deficit experiment received about half of irrigation that was applied to the well-watered experiment. Four genotypes with different tolerance levels to water stress were evaluated. The UPLRI 7, B6144F-MR-6-0-0, and IR80312-6-B-3-2-B genotypes, under water stress conditions, during the day, showed lower stomatal diffusive resistance, higher leaf water potential, and lower leaf temperature than the control. These genotypes showed the highest grain yields under water stress conditions, which were 534, 601, and 636 kg ha-1, respectively, and did not differ significantly among them. They also showed lower drought susceptibility index than the other genotypes. 'BRS Soberana' (susceptible control) was totally unproductive under drought conditions. Leaf temperature is a easy-read parameter correlated to plant-water status, viable for selecting rice genotypes for water deficit tolerance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The experiment was carried out at the Embrapa Semi-Árido, Petrolina-PE, Brazil, in order to study the physiological responses of umbu plants propagated by seeds and by stem cuttings under water stress conditions, based on leaf water potential and gas exchange measurements. Data were collected in one-year plants established in pots containing 30 kg of a sandy soil and submitted to twenty-day progressive soil water deficit. The evaluations were based on leaf water potential and gas exchange data collection using psychrometric chambers and a portable infra-red gas analyzer, respectively. Plants propagated by seeds maintained a significantly higher water potential, stomatal conductance, transpiration and photosynthesis under decreasing soil water availability. However, plants propagated by stem cuttings were unable to maintain a favorable internal water balance, reflecting negatively on stomatal conductance and leaf gas exchange. This fact is probably because umbu plants propagated by stem cuttings are not prone to formation of root tubers which are reservoirs for water and solutes. Thus, the establishing of umbu plants propagated by stem cuttings must be avoided in areas subjected to soil water deficit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crabwood (Carapa guianensis Aubl.) is a fast growing tree species with many uses among Amazonian local communities. The main objective of this study was to assess the effect of seasonal rainfall pattern on growth rates, and seasonal and diurnal changes in leaf gas exchange and leaf water potential (ΨL) in crabwood. To assess the effect of rainfall seasonality on growth and physiological leaf traits an experiment was conducted in Manaus, AM (03º 05' 30" S, 59º 59' 35" S). In this experiment, six 6-m tall plants were used to assess photosynthetic traits and ΨL. In a second experiment the effect of growth irradiance on stomatal density (S D), size (S S) and leaf thickness was assessed in 0.8-m tall saplings. Stomatal conductance (g s) and light-saturated photosynthesis (Amax) were higher in the wet season, and between 09:00 and 15:00 h. However, no effect of rainfall seasonality was found on ΨL and potential photosynthesis (CO2-saturated). ΨL declined from -0.3 MPa early in the morning to -0.75 MPa after midday. It increased in the afternoon but did not reach full recovery at sunset. Growth rates of crabwood were high, and similar in both seasons (2 mm month-1). Leaf thickness and S D were 19% and 47% higher in sun than in shade plants, whereas the opposite was true for S S. We conclude that ΨL greatly affects carbon assimilation of crabwood by reducing g s at noon, although this effect is not reflected on growth rates indicating that other factors offset the effect of g s on Amax.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we evaluated photosynthetic characteristics and patterns of biomass accumulation in seedlings of two tree species from a Semideciduous Tropical Forest of Brazil. Seedlings of Trema micrantha (L.) Blum. (pioneer) and Hymenaea courbaril (L.) var. stilbocarpa (Hayne) Lee & Langenh. (climax) were grown for 4 months under low light (LL) (5%-8% of sunlight) and high light (HL) (100% of sunlight). Under HL, T. micrantha showed higher CO2 assimilation rates (A CO2) and light saturation than H. courbaril. Under LL, A CO2 were higher in H. courbaril. Under LL, total chlorophyll and carotenoid contents per unit leaf area were higher in H. courbaril. Chlorophyll a/b ratio was higher in T. micrantha under both light regimes. A CO2 and Fv/Fm ratio at both pre-dawn and midday in H. coubaril were lower in HL indicating chronic photoinhibition. Thus, the climax species was more susceptible to photoinhibition than the pioneer. However, H. courbaril produced higher total biomass under both treatments showing high efficiency in the maintenance of a positive carbon balance. Thus, both species expressed characteristics that favor growth under conditions that resemble their natural microenvironments, but H. courbaril also grew under HL. The ecophysiological range of responses to contrasting light levels of this climax plant seems to be broader than generally observed for other rainforest climax species. We propose that this could be related to the particular spatio-temporal light regime of the semideciduous forests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of intercropping on plant water status, gas exchange and productivity of maize (Zea mays L.) cv. Centralmex, and cowpea (Vigna unguiculata L. (Walp)) cv. Pitiuba were evaluated under semi-arid conditions at the Embrapa-Centro de Pesquisa Agropecuária do Trópico Semi-Árido (CPATSA) at Petrolina, PE, Brazil. The treatments were: maize and cowpea as sole crops, at a population of 40,000 plants ha-1, and intercropped at a population of 20,000 plants ha-1. The results obtained in this paper appear to be related to the degree of competition experienced by the components, mainly for water and light. Maize intercropped had higher values of leaf water potential, stomatal conductance, transpiration and photosynthesis than as sole crop. Intercropped cowpea had higher values of leaf water potential but lower stomatal conductance, transpiration and photosynthesis than sole cowpea. Maize productivity increased 18% in relation to sole crop whereas a 5% decrease was observed with cowpea. Despite these facts the Land Equivalent Ratio obtained was 1.13 indicating intercropping advantage over the sole system. The higher partial Land Equivalent Ratio observed for maize suggests that this specie was the main component influencing the final productivity of the intercropping system studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to determine the critical irrigation time for common bean (Phaseolus vulgaris L. cv. Carioca) using infrared thermometry. Five treatments were analyzed. Canopy temperature differences between plants and a well-watered control about 1, 2, 3, 4, and 5±0.5ºC were tested. Physiological variables and plant growth were analyzed to establish the best time to irrigate. There was a significant linear correlation between the index and stomatal resistance, transpiration rate, and leaf water potential. Although significant linear correlation between the index and mean values of total dry matter, absolute growth rate, and leaf area index was found, no correlation was found with other growth index like relative growth rate, net assimilation rate, and leaf area ratio. Plants irrigated when their canopy temperature was 3±0.5ºC above the control had their relative growth rate mean value increased up to 59.7%, yielding 2,260.2 kg ha-1, with a reduction of 38.0% in the amount of water used. Plants irrigated when their canopy temperature was 4±0.5ºC yielded 1,907.6 kg ha-1, although their relative growth rate mean value was 4.0% below the control. These results show that the best moment to irrigate common bean is when their canopy temperature is between 3ºC and 4±0.5ºC above the control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Irrigation plays an important role for grape’s yield as well as on its quality for winemaking. Thus, the effects of deficit irrigation strategies on yield and quality of wine grapes cv. Syrah were evaluated in Petrolina, State of Pernambuco, Brazil. Evaluations were carried out throughout the second and third growing seasons, which were from November 2010 to February 2011 (rainy season) and from May to September 2011 (dry season), respectively. Vines were drip irrigated and the experimental design was completely randomized with three treatments and four replications. The treatments were full irrigation (FI), performed according crop evapotranspiration; regulated deficit irrigation (RDI), in which irrigation was interrupted in phenological growth stage of bunch closure, but was occasionally performed according soil water monitoring of the root zone; and deficit irrigation (DI), when irrigation was interrupted from bunch closure to harvesting. Differences on leaf water content among treatments were observed in both growing seasons and RDI and DI treatment plants presented moderate water stress. The number of bunches did not differ among treatments in both growing seasons; however, bunch weight per plant, average bunch weight and soluble solid content were higher in FI treatment during the dry season. Deficit irrigation strategies promoted water saving.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments were conducted to evaluate the allelopathic influence of Rhynchosia capitata on germination and seedling growth of mungbean (Vigna radiate) along with identification of the phytotoxic substances responsible for this activity. Water extracts of root, shoot, leaf, fruit and whole plant were prepared by soaking them in water in a ratio of 1:20 (w/v) for 24 h. All the extracts affected germination and seedling growth of mungbean, but higher inhibition was seen with R. capitata leaf water extracts. A linear decrease in the germination characteristics of mungbean was observed with the decrease in the concentration of leaf extract from 5% to 1%. The soil-incorporated residues (1-4% w/w) of R. capitata stimulated the growth of root and hypocotyl at low concentrations, while it inhibited their growth at higher concentrations. Rhynchosia capitata soil-incorporated residues (4% w/w) significantly reduced the seedling vigour index of mungbean in addition to their significant effect on total germination. A significant amount of water-soluble phenolic acids were found in R. capitata plant extracts. The content of total phenolic acids was higher in the leaf extract compared to that of the stem, fruit or root extracts. Two phenolic acids including vanillic acid and 4‑(hydroxymethyl) benzoic acid were found in R. capitata leaf extracts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An ion chromatography procedure, employing an IonPac AC15 concentrator column was used to investigate on line preconcentration for the simultaneous determination of inorganic anions and organic acids in river water. Twelve organic acids and nine inorganic anions were separated without any interference from other compounds and carry-over problems between samples. The injection loop was replaced by a Dionex AC15 concentrator column. The proposed procedure employed an auto-sampler that injected 1.5 ml of sample into a KOH mobile phase, generated by an Eluent Generator, at 1.5 mL min-1, which carried the sample to the chromatographic columns (one guard column, model AG-15, and one analytical column, model AS15, with 250 x 4mm i.d.). The gradient elution concentrations consisted of a 10.0 mmol l-1 KOH solution from 0 to 6.5 min, gradually increased to 45.0 mmol l-1 KOH at 21 min., and immediatelly returned and maintained at the initial concentrations until 24 min. of total run. The compounds were eluted and transported to an electro-conductivity detection cell that was attached to an electrochemical detector. The advantage of using concentrator column was the capability of performing routine simultaneous determinations for ions from 0.01 to 1.0 mg l-1 organic acids (acetate, propionic acid, formic acid, butyric acid, glycolic acid, pyruvate, tartaric acid, phthalic acid, methanesulfonic acid, valeric acid, maleic acid, oxalic acid, chlorate and citric acid) and 0.01 to 5.0 mg l-1 inorganic anions (fluoride, chloride, nitrite, nitrate, bromide, sulfate and phosphate), without extensive sample pretreatment and with an analysis time of only 24 minutes.