2 resultados para Poxviruses
em Scielo Saúde Pública - SP
Resumo:
Toddia França, 1912 under the light microscope occurs as inclusion corpuscles in the cytoplasm of erythrocytes of cold-blooded vertebrates sometimes accompanied by crystalloid bodies. Its position among the protozoans or the viruses has been discussed by some authors, but remained unclear. To elucidate this problem we studied Toddia from a Brazilian frog (Leptodactylus ocellatus) by electron microscopy. In the cytoplasm of the infected cells we found no protozoan, but rather virus-like particles often hexagonal in outline, averaging 195 nm excluding their two involving membranes, and presenting a central area of variable electron density. Particles at different stages of development were generally found around or on area lighter density than the cytoplasm. which resembled a virus synthesis site. At high magnification, the nuclear or cytoplasmic crystals allied to Toddia resembled the crystalline lattice of the inclusion bodies associated with the polyhedrosis viruses and poxviruses from insects, of the capsules of granulosis viruses and of other protein crystals in ultrathin sections. Cytochemical tests in Toddia corpuscles displayed exclusively the presence of deoxyribonucleic acid. These findings indicate that Toddia is not a protozoan and demonstrate that it is in all probability a viral inclusion corpuscle. Taking into account the nucleic acid type found in its structure (DNA) and the hexagonal shape usually shown in ultrathin sections by its component particles, which have a cytoplasmic site of synthesis and assembly, we tentatively relate Toddia with the so-called "Icosahedral Cytoplasmic Deoxyriboviruses". We believe that the present paper gives the first report of virus-like particles in L. ocellatus.
Resumo:
The lack of immunogenicity of most malaria antigens and the complex immune responses required for achieving protective immunity against this infectious disease have traditionally hampered the development of an efficient human malaria vaccine. The current boom in development of recombinant viral vectors and their use in prime-boost protocols that result in enhanced immune outcomes have increased the number of malaria vaccine candidates that access pre-clinical and clinical trials. In the frontline, adenoviruses and poxviruses seem to be giving the best immunization results in experimental animals and their mutual combination, or their combination with recombinant proteins (formulated in adjuvants and given in sequence or being given as protein/virus admixtures), has been shown to reach unprecedented levels of anti-malaria immunity that predictably will be somehow reproduced in the human setting. However, all this optimism was previously seen in the malaria vaccine development field without many real applicable results to date. We describe here the current state-of-the-art in the field of recombinant adenovirus research for malaria vaccine development, in particular referring to their use in combination with other immunogens in heterologous prime-boost protocols, while trying to simultaneously show our contributions and point of view on this subject.