37 resultados para Post-exercise recovery
em Scielo Saúde Pública - SP
Resumo:
To evaluate the effect of exercise intensity on post-exercise cardiovascular responses, 12 young normotensive subjects performed in a randomized order three cycle ergometer exercise bouts of 45 min at 30, 50 and 80% of VO2peak, and 12 subjects rested for 45 min in a non-exercise control trial. Blood pressure (BP) and heart rate (HR) were measured for 20 min prior to exercise (baseline) and at intervals of 5 to 30 (R5-30), 35 to 60 (R35-60) and 65 to 90 (R65-90) min after exercise. Systolic, mean, and diastolic BP after exercise were significantly lower than baseline, and there was no difference between the three exercise intensities. After exercise at 30% of VO2peak, HR was significantly decreased at R35-60 and R65-90. In contrast, after exercise at 50 and 80% of VO2peak, HR was significantly increased at R5-30 and R35-60, respectively. Exercise at 30% of VO2peak significantly decreased rate pressure (RP) product (RP = HR x systolic BP) during the entire recovery period (baseline = 7930 ± 314 vs R5-30 = 7150 ± 326, R35-60 = 6794 ± 349, and R65-90 = 6628 ± 311, P<0.05), while exercise at 50% of VO2peak caused no change, and exercise at 80% of VO2peak produced a significant increase at R5-30 (7468 ± 267 vs 9818 ± 366, P<0.05) and no change at R35-60 or R65-90. Cardiovascular responses were not altered during the control trial. In conclusion, varying exercise intensity from 30 to 80% of VO2peak in young normotensive humans did not influence the magnitude of post-exercise hypotension. However, in contrast to exercise at 50 and 80% of VO2peak, exercise at 30% of VO2peak decreased post-exercise HR and RP.
Resumo:
Physical exercise is associated with parasympathetic withdrawal and increased sympathetic activity resulting in heart rate increase. The rate of post-exercise cardiodeceleration is used as an index of cardiac vagal reactivation. Analysis of heart rate variability (HRV) and complexity can provide useful information about autonomic control of the cardiovascular system. The aim of the present study was to ascertain the association between heart rate decrease after exercise and HRV parameters. Heart rate was monitored in 17 healthy male subjects (mean age: 20 years) during the pre-exercise phase (25 min supine, 5 min standing), during exercise (8 min of the step test with an ascending frequency corresponding to 70% of individual maximal power output) and during the recovery phase (30 min supine). HRV analysis in the time and frequency domains and evaluation of a newly developed complexity measure - sample entropy - were performed on selected segments of heart rate time series. During recovery, heart rate decreased gradually but did not attain pre-exercise values within 30 min after exercise. On the other hand, HRV gradually increased, but did not regain rest values during the study period. Heart rate complexity was slightly reduced after exercise and attained rest values after 30-min recovery. The rate of cardiodeceleration did not correlate with pre-exercise HRV parameters, but positively correlated with HRV measures and sample entropy obtained from the early phases of recovery. In conclusion, the cardiodeceleration rate is independent of HRV measures during the rest period but it is related to early post-exercise recovery HRV measures, confirming a parasympathetic contribution to this phase.
Resumo:
Individuals with systemic arterial hypertension have a higher risk of heat-related complications. Thus, the aim of this study was to examine the thermoregulatory responses of hypertensive subjects during recovery from moderate-intensity exercise performed in the heat. A total of eight essential hypertensive (H) and eight normotensive (N) male subjects (age=46.5±1.3 and 45.6±1.4 years, body mass index=25.8±0.8 and 25.6±0.6 kg/m2, mean arterial pressure=98.0±2.8 and 86.0±2.3 mmHg, respectively) rested for 30 min, performed 1 h of treadmill exercise at 50% of maximal oxygen consumption, and rested for 1 h after exercise in an environmental chamber at 38°C and 60% relative humidity. Skin and core temperatures were measured to calculate heat exchange parameters. Mean arterial pressure was higher in the hypertensive than in the normotensive subjects throughout the experiment (P<0.05, unpaired t-test). The hypertensive subjects stored less heat (H=-24.23±3.99 W·m−2vs N=-13.63±2.24 W·m−2, P=0.03, unpaired t-test), experienced greater variations in body temperature (H=-0.62±0.05°C vsN=-0.35±0.12°C, P=0.03, unpaired t-test), and had more evaporated sweat (H=-106.1±4.59 W·m−2vs N=-91.15±3.24 W·m−2, P=0.01, unpaired t-test) than the normotensive subjects during the period of recovery from exercise. In conclusion, essential hypertensive subjects showed greater sweat evaporation and increased heat dissipation and body cooling relative to normotensive subjects during recovery from moderate-intensity exercise performed in hot conditions.
Resumo:
Due to differences in study populations and protocols, the hemodynamic determinants of post-aerobic exercise hypotension (PAEH) are controversial. This review analyzed the factors that might influence PAEH hemodynamic determinants, through a search on PubMed using the following key words: “postexercise” or “post-exercise” combined with “hypotension”, “blood pressure”, “cardiac output”, and “peripheral vascular resistance”, and “aerobic exercise” combined only with “blood pressure”. Forty-seven studies were selected, and the following characteristics were analyzed: age, gender, training status, body mass index status, blood pressure status, exercise intensity, duration and mode (continuous or interval), time of day, and recovery position. Data analysis showed that 1) most postexercise hypotension cases are due to a reduction in systemic vascular resistance; 2) age, body mass index, and blood pressure status influence postexercise hemodynamics, favoring cardiac output decrease in elderly, overweight, and hypertensive subjects; 3) gender and training status do not have an isolated influence; 4) exercise duration, intensity, and mode also do not affect postexercise hemodynamics; 5) time of day might have an influence, but more data are needed; and 6) recovery in the supine position facilitates systemic vascular resistance decrease. In conclusion, many factors may influence postexercise hypotension hemodynamics, and future studies should directly address these specific influences because different combinations may explain the observed variability in postexercise hemodynamic studies.
Resumo:
Background: Although exercise training is known to promote post-exercise hypotension, there is currently no consistent argument about the effects of manipulating its various components (intensity, duration, rest periods, types of exercise, training methods) on the magnitude and duration of hypotensive response. Objective: To compare the effect of continuous and interval exercises on hypotensive response magnitude and duration in hypertensive patients by using ambulatory blood pressure monitoring (ABPM). Methods: The sample consisted of 20 elderly hypertensives. Each participant underwent three ABPM sessions: one control ABPM, without exercise; one ABPM after continuous exercise; and one ABPM after interval exercise. Systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), heart rate (HR) and double product (DP) were monitored to check post-exercise hypotension and for comparison between each ABPM. Results: ABPM after continuous exercise and after interval exercise showed post-exercise hypotension and a significant reduction (p < 0.05) in SBP, DBP, MAP and DP for 20 hours as compared with control ABPM. Comparing ABPM after continuous and ABPM after interval exercise, a significant reduction (p < 0.05) in SBP, DBP, MAP and DP was observed in the latter. Conclusion: Continuous and interval exercise trainings promote post-exercise hypotension with reduction in SBP, DBP, MAP and DP in the 20 hours following exercise. Interval exercise training causes greater post-exercise hypotension and lower cardiovascular overload as compared with continuous exercise.
Resumo:
Abstract Hypertension affects 25% of the world's population and is considered a risk factor for cardiovascular disorders and other diseases. The aim of this study was to examine the evidence regarding the acute effect of exercise on blood pressure (BP) using meta-analytic measures. Sixty-five studies were compared using effect sizes (ES), and heterogeneity and Z tests to determine whether the ES were different from zero. The mean corrected global ES for exercise conditions were -0.56 (-4.80 mmHg) for systolic BP (sBP) and -0.44 (-3.19 mmHg) for diastolic BP (dBP; z ≠ 0 for all; p < 0.05). The reduction in BP was significant regardless of the participant's initial BP level, gender, physical activity level, antihypertensive drug intake, type of BP measurement, time of day in which the BP was measured, type of exercise performed, and exercise training program (p < 0.05 for all). ANOVA tests revealed that BP reductions were greater if participants were males, not receiving antihypertensive medication, physically active, and if the exercise performed was jogging. A significant inverse correlation was found between age and BP ES, body mass index (BMI) and sBP ES, duration of the exercise's session and sBP ES, and between the number of sets performed in the resistance exercise program and sBP ES (p < 0.05). Regardless of the characteristics of the participants and exercise, there was a reduction in BP in the hours following an exercise session. However, the hypotensive effect was greater when the exercise was performed as a preventive strategy in those physically active and without antihypertensive medication.
Resumo:
PURPOSE: To determine fetal heart rate (FHR) responses to maternal resistance exercise for the upper and lower body at two different volumes, and after 25 minutes post-exercise.METHODS: Ten pregnant women (22-24 weeks gestation, 25.2±4.4 years of age, 69.8±9.5 kg, 161.6±5.2 cm tall) performed, at 22-24, 28-32 and 34-36 weeks, the following experimental sessions: Session 1 was a familiarization with the equipment and the determination of one estimated maximum repetition. For sessions 2, 3, 4 and 5,FHR was determined during the execution of resistance exercise on bilateral leg extension and pec-deck fly machines, with 1 and 3 sets of 15 repetitions; 50% of the weight load and an estimated repetition maximum. FHR was assessed with a portable digital cardiotocograph. Results were analyzed using Student's ttest, ANOVA with repeated measures and Bonferroni (α=0.05; SPSS 17.0).RESULTS: FHR showed no significant differences between the exercises at 22-24 weeks (bilateral leg extension=143.8±9.4 bpm, pec-deck fly=140.2±10.2 bpm, p=0.34), 28-30 weeks (bilateral leg extension=138.4±12.2 bpm, pec-deck fly=137.6±14.0 bpm, p=0.75) and 34-36 weeks (bilateral leg extension=135.7±5.8 bpm, pec-deck fly=139.7±13.3 bpm, p=0.38), between the volumes(bilateral leg extension at 22-24 weeks: p=0.36, at 28-30 weeks: p=0.19 and at 34-36 weeks: p=0.87; pec-deck fly at 22-24 weeks: p=0.43, at 28-30 weeks: p=0.61 and at 34-36 weeks: p=0.49) and after 25 minutes post-exercise.CONCLUSION: Results of this pilot study would suggest that maternal resistance exercise is safe for the fetus.
Resumo:
The present study evaluated whether the luteal phase elevation of body temperature would be offset during exercise by increased sweating, when women are normally hydrated. Eleven women performed 60 min of cycling exercise at 60% of their maximal work load at 32ºC and 80% relative air humidity. Each subject participated in two identical experimental sessions: one during the follicular phase (between days 5 and 8) and the other during the luteal phase (between days 22 and 25). Women with serum progesterone >3 ng/mL, in the luteal phase were classified as group 1 (N = 4), whereas the others were classified as group 2 (N = 7). Post-exercise urine volume (213 ± 80 vs 309 ± 113 mL) and specific urine gravity (1.008 ± 0.003 vs 1.006 ± 0.002) changed (P < 0.05) during the luteal phase compared to the follicular phase in group 1. No menstrual cycle dependence was observed for these parameters in group 2. Sweat rate was higher (P < 0.05) in the luteal (3.10 ± 0.81 g m-2 min-1) than in the follicular phase (2.80 ± 0.64 g m-2 min-1) only in group 1. During exercise, no differences related to menstrual cycle phases were seen in rectal temperature, heart rate, rate of perceived exertion, mean skin temperature, and pre- and post-exercise body weight. Women exercising in a warm and humid environment with water intake seem to be able to adapt to the luteal phase increase of basal body temperature through reduced urinary volume and increased sweating rate.
Resumo:
The aim of this study was to compare the effect of an intermittent intense aerobic exercise session and a resistance exercise session on blood cell counts and oxidative stress parameters in middle-aged women. Thirty-four women were selected and divided into three groups: RE group (performing 60 min of resistance exercises, N = 12), spinning group (performing 60 min of spinning, N = 12), and control group (not exercising regularly, N = 10). In both exercise groups, lymphocytes and monocytes decreased after 1-h recuperation (post-exercise) compared to immediately after exercise (P < 0.05). Immediately after exercise, in both exercised groups, a significant increase in TBARS (from 16.5 ± 2 to 25 ± 2 for the spinning group and from 18.6 ± 1 to 28.2 ± 3 nmol MDA/mL serum for the RE group) and protein carbonyl (from 1.0 ± 0.3 to 1.6 ± 0.2 for the spinning group and from 0.9 ± 0.2 to 1.5 ± 0.2 nmol/mg protein for the RE group) was observed (P < 0.05). A decrease in antioxidant activities (non-protein sulfhydryl, superoxide dismutase, catalase) was also demonstrated with a negative correlation between damage markers and antioxidant body defenses (P < 0.05). These results indicate that an acute bout of intermittent or anaerobic exercise induces immune suppression and increases the production of reactive oxygen species, causing oxidative stress in middle-aged and trained women. Furthermore, we demonstrated that trained women show improved antioxidant capacity and lower oxidative damage than sedentary ones, demonstrating the benefits of chronic regular physical activity.
Resumo:
This study aimed to examine the time course of endothelial function after a single handgrip exercise session combined with blood flow restriction in healthy young men. Nine participants (28±5.8 years) completed a single session of bilateral dynamic handgrip exercise (20 min with 60% of the maximum voluntary contraction). To induce blood flow restriction, a cuff was placed 2 cm below the antecubital fossa in the experimental arm. This cuff was inflated to 80 mmHg before initiation of exercise and maintained through the duration of the protocol. The experimental arm and control arm were randomly selected for all subjects. Brachial artery flow-mediated dilation (FMD) and blood flow velocity profiles were assessed using Doppler ultrasonography before initiation of the exercise, and at 15 and 60 min after its cessation. Blood flow velocity profiles were also assessed during exercise. There was a significant increase in FMD 15 min after exercise in the control arm compared with before exercise (64.09%±16.59%, P=0.001), but there was no change in the experimental arm (-12.48%±12.64%, P=0.252). FMD values at 15 min post-exercise were significantly higher for the control arm in comparison to the experimental arm (P=0.004). FMD returned to near baseline values at 60 min after exercise, with no significant difference between arms (P=0.424). A single handgrip exercise bout provoked an acute increase in FMD 15 min after exercise, returning to near baseline values at 60 min. This response was blunted by the addition of an inflated pneumatic cuff to the exercising arm.
Resumo:
Standard ecological methods (pitfall traps, trunk eclectors and soil cores) were used to evaluate collembolan community responses to different flooding intensities. Three sites of a floodplain habitat near Mainz, Germany, with different flooding regimes were investigated. The structures of collembolan communities are markedly different depending on flooding intensity. Sites more affected by flooding are dominated by hygrophilic and hygrotolerant species, whereas the hardwood floodplain is dominated by mesophilic species. The survival strategies of the hygrophilic and hygrotolerant species include egg diapause and passive drifting. The physiological adaptations to hypoxic conditions of several collembolan species were analyzed using a microcalorimeter. The activities were tested under normoxic and hypoxic/anoxic conditions as well as during post-hypoxic recovery. Lactate was increased after hypoxic intervals in the species studied, suggesting that, in addition to a massive decrease in metabolic rate, a modest glycolytic activity may be involved in the tolerance to hypoxia.
Resumo:
OBJECTIVE: To evaluate the initial results after the implementation of perioperative protocol in patients over 60 years of age undergoing surgical treatment for femur fractures.METHODS: We conducted a prospective study of patients older than 60 years who were hospitalized with femur fracture. They were operated under spinal anesthesia and analgesia by lumbar plexus blockade. Data evaluation was performed before arrival in the operating room during surgery, in the post-anesthesia recovery room and in the ward the next morning of the operation.RESULTS: 105 patients underwent various types of surgical corrections of the femur. The hospital stay ranged from three to 86 days. Fasting ranged from 9h15min to 19h30mn. Hypotension occurred in 5.7%. The duration of motor blockade ranged from 1h45min to 5h30imn. Maltodextrin feeding ranged from 50min to 3h45min and the time spent in the post-anesthetic care unit ranged from 50 minutes to 4 hours. Onset of oral intake in the ward ranged from 4hto 8h15min. The duration of anesthesia ranged from 14 to 33 hours. No patient required a urinary catheter, nor was transferred to the ICU. All patients were able to be discharged on the first postoperative day.CONCLUSION: The use of a protocol to accelerate the postoperative period may reduce the fasting time, length of hospital stay and provide faster i discharge n elderly patients with femur fractures.
Resumo:
Abstract: Pre-operative electrocardiograms performed in 700 dogs were analyzed in order to establish correlation between sex, age, indication for surgery, body condition score, breed and weight. Initially a clinical questionnaire was filled out from each owner, including age, breed, sex, weight, clinical history and surgical indication. Dogs above 6 years of age or those showing any kind of cardiac auscultation disturbances were referred to electrocardiogram (ECG) evaluation. All ECG were performed and analyzed by the same veterinary specialist. Abnormalities at ECG were founnd in 364 of 700 (52%) evaluated dogs, and the most frequent variation was sinus arrhythmia, observed in 293 dogs (25.4%). No significant correlation was found between the electrocardiographic alterations with weight, sex and age of the animals. Therefore ECG should be conducted routinely regardless of age, sex, breed or surgical indication, highlighting its value for determining a safe anesthetic protocol that promotes minimal cardiopulmonary depression and allows rapid post-surgical recovery.
Resumo:
Our objective was to determine lipid peroxidation and nuclear factor-κB (NF-κB) activation in skeletal muscle and the plasma cytokine profile following maximum progressive swimming. Adult male Swiss mice (N = 15) adapted to the aquatic environment were randomly divided into three groups: immediately after exercise (EX1), 3 h after exercise (EX2) and control. Animals from the exercising groups swam until exhaustion, with an initial workload of 2% of body mass attached to the tail. Control mice did not perform any exercise but were kept immersed in water for 20 min. Maximum swimming led to reactive oxygen species (ROS) generation in skeletal muscle, as indicated by increased thiobarbituric acid reactive species (TBARS) levels (4062.67 ±1487.10 vs 19,072.48 ± 8738.16 nmol malondialdehyde (MDA)/mg protein, control vs EX1). Exercise also promoted NF-κB activation in soleus muscle. Cytokine secretion following exercise was marked by increased plasma interleukin-6 (IL-6) levels 3 h post-exercise (P < 0.05). Interleukin-10 (IL-10) levels were reduced following exercise and remained reduced 3 h post-exercise (P < 0.05). Plasma levels of other cytokines investigated, monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ) and interleukin-12 (IL-12), were not altered by exercise. The present findings showed that maximum swimming, as well as other exercise models, led to lipid peroxidation and NF-κB activation in skeletal muscle and increased plasma IL-6 levels. The plasma cytokine response was also marked by reduced IL-10 levels. These results were attributed to exercise type and intensity.
Resumo:
The purpose of this study was to analyze the relationship between the anaerobic components of the maximal accumulated oxygen deficit (MAOD) and of the 30-second Wingate anaerobic test (30-WAnT). Nine male physical education students performed: a) a maximal incremental exercise test; b) a supramaximal constant workload test to determine the anaerobic components of the MAOD; and c) a 30-WAnT to measure the peak power (PP) and mean power (MP). The fast component of the excess post-exercise oxygen consumption and blood lactate accumulation were measured after the supramaximal constant workload test in order to determine the contributions made by alactic (ALMET) and lactic (LAMET) metabolism. Significant correlations were found between PP and ALMET (r=0.71; P=0.033) and between MP and LAMET(r=0.72; P=0.030). The study results suggested that the anaerobic components of the MAOD and of the 30-WAnT are similarly applicable in the assessment of ALMET and LAMET during high-intensity exercise.