9 resultados para Polydispersity
em Scielo Saúde Pública - SP
Resumo:
This review deals with the homo- and copolymerization of styrene with nickel catalysts. The catalytic activity, polymer stereoregularity, polymer molecular weight and polydispersity are dependent upon nickel ligands and reaction parameters. Catalysts supported on silica, treated with methylaluminoxane (MAO), have shown higher stereospecificity and activity compared to homogeneous ones. The influence of these parameters is discussed focusing on the elucidation of some aspects of the polymerization mechanism.
Resumo:
The characterization of dextran in sugars by size exclusion chromatography (SEC) has been carried out according to the number-average molecular weight (Mn), the weight-average molecular weight (Mw), the Z-average molecular weight (Mz), and the polydispersity (Mw/Mn). The results suggest that all the analyzed thirty sugar samples from São Paulo state were contaminated with two or three different dextran polymers. The collected data clearly point out that the total dextran content together with the mass distribution parameters Mw, Mn, Mz, and Mw/Mn should be considered during the evaluation of the quality of the sugar used for the cachaça sweeting process.
Caracterização das O-acetil-(4-O-metilglicurono)xilanas isoladas da madeira de Eucalyptus urograndis
Resumo:
The O-acetyl-4-O-methyl-(glucurono)xylans were isolated from E. urograndis by extraction with dimethyl sulfoxide, analysed for monosaccharide composition and structurally characterized by NMR spectroscopy. These xylans contained one 4-O-methyl-glucuronic acid substituent and 5.5 acetyl groups for approximately 10 xylose residues. About 10% of 4-O-methyl-glucuronic acid (MeGlcA) units were branched at O-2. The O-acetyl-4-O-methyl-(glucurono)-xylans were composed of the following (1 → 4)-linked β-D-xylopyranosyl structural elements: unsubstituted (51 mol%), 2-O-acetylated (12 mol%), 3-O-acetylated (20 mol%), 2,3-di-O-acetylated (6 mol%) and [MeGlcA α-(1 → 2)] [3-O-acetylated] (11 mol%). The weight-average molar mass and polydispersity of this xylan were 34.9 kDa and 1.16, respectively, as measured by size-exclusion chromatography.
Resumo:
In this paper we describe the preparation poly (L-lactide) (PLA) nanocapsules as a drug delivery system for the local anesthetic benzocaine. The characterization and in vitro release properties of the system were investigated. The characterization results showed a polydispersity index of 0.14, an average diameter of 190.1± 3 nm, zeta potential of -38.5 mV and an entrapment efficiency of 73%. The release profile of Benzocaine loaded in PLA nanocapsules showed a significant different behavior than that of the pure anesthetic in solution. This study is important to characterize a drug release system using benzocaine for application in pain treatment.
Resumo:
Nanoparticles were produced by solvent emulsification evaporation method with the following characteristics: nanometric size (238 ± 3 nm), narrow polydispersity index (0.11), negative zeta potential (-15.1 mV), good yield of the process (73 ± 1.5%), excellent encapsulation efficiency (81.3 ± 4.2%) and spherical shape. X-rays diffraction demonstrated the loss of drug crystallinity after encapsulation; however, the profile of the diffractograms of the poly-ε-caprolactone (PCL) nanoparticles was kept. Differential scanning calorimetry thermograms, correspondingly, exhibited the loss of drug melting peak and the increasing of the melting point of the PCL nanoparticles, evidencing an interaction drug-polymer. Naproxen release was low and sustained obeying the Higuchi´s kinetic. The results show that nanoparticles are promising sustained release system to the naproxen.
Resumo:
The goal of this study was to evaluate the feasibility of preparing nanocapsules and nanoemulsions using tea tree oil as oily phase aiming to protect its volatilization. The nanostructures presented nanometric mean size (160-220 nm) with a polydispersity index below 0.25 and negative zeta potential. The pH values were 6.43 ± 0.37 and 5.98 ± 0.00 for nanoemulsions and nanocapsules, respectively. The oil content after preparation was 96%. The inclusion of tea tree oil in nanocapsules showed higher protection against volatilization. The analysis of mean size and polydispersity index of formulations presented no significant alteration during the storage time.
Resumo:
In this study, polymeric nanocapsules of PCL containing the herbicide atrazine were prepared. In order to optimize the preparation conditions, a 2³ factorial design was performed using different formulations of nanocapsules, which investigated the influence of three variables at two levels. The factors varied were the quantities of PCL, Span 60 and Myritol. The results were evaluated considering the size, polydispersity, zeta potential and association rate and the measures of these parameters were taken immediately after preparation and after 30 days of preparation. The formulations with minimum level of polymer in the preparation showed better stability results.
Resumo:
The exopolysaccharides with characteristics of gel produced by Rhizobium tropici (EPS RT) and Mesorhizobium sp (EPS MR) are acidic heteropolysaccharide composed mainly of glucose and galactose in a molar ratio of 4:1 and 5:1 respectively, with traces of mannose (~ 1%). Chemical analysis showed the presence of uronic acid, pyruvate and acetyl-substituents in the structures of both polymers. Experiments of gel permeation chromatography and polyacrylamide gel electrophoresis showed that EPS RT and EPS MR are homogeneous molecules with low grade of polydispersity. The EPS were characterized using spectroscopic techniques of FT-IR, ¹H and 13C-NMR.
Resumo:
Food industry has been developing products to meet the demands of increasing number of consumers who are concerned with their health and who seek food products that satisfy their needs. Therefore, the development of processed foods that contain functional components has become important for this industry. Microencapsulation can be used to reduce the effects of processing on functional components and preserve their bioactivity. The present study investigated the production of lipid microparticles containing phytosterols by spray chilling. The matrices comprised mixtures of stearic acid and hydrogenated vegetable fat, and the ratio of the matrix components to phytosterols was defined by an experimental design using the mean diameters of the microparticles as the response variable. The melting point of the matrices ranged from 44.5 and 53.4 ºC. The process yield was melting point dependent; the particles that exhibited lower melting point had greater losses than those with higher melting point. The microparticles' mean diameters ranged from 13.8 and 32.2 µm and were influenced by the amount of phytosterols and stearic acid. The microparticles exhibited spherical shape and typical polydispersity of atomized products. From a technological and practical (handling, yield, and agglomeration) points of view, lipid microparticles with higher melting point proved promising as phytosterol carriers.