63 resultados para Polycyclic aromatic compound
em Scielo Saúde Pública - SP
Resumo:
The effect of soil contamination by polycyclic aromatic hydrocarbons (PAH) and heavy metals on earthworms and enchytraeids was studied in urban parks, in Brno, Czech Republic. In spring and autumn 2007, annelids were collected and soil samples taken in lawns along transects, at three different distances (1, 5 and 30 m) from streets with heavy traffic. In both seasons, two parks with two transects each were sampled. Earthworms were collected using the electrical octet method. Enchytraeids were extracted by the wet funnel method from soil cores. All collected annelids were counted and identified. Basic chemical parameters and concentrations of 16 PAH, Cd, Cu, Pb, and Zn were analysed from soil from each sampling point. PAH concentrations were rather low, decreasing with the distance from the street in spring but not in autumn. Heavy metal concentrations did not decrease significantly with increasing distance. Annelid densities did not significantly differ between distances, although there was a trend of increase in the number of earthworms with increasing distance. There were no significant correlations between soil content of PAH or heavy metals and earthworm or enchytraeid densities. Earthworm density and biomass were negatively correlated with soil pH; and enchytraeid density was positively correlated with soil phosphorus.
Resumo:
Alternatives for the removal of high-molecular weight polycyclic aromatic hydrocarbons (HWM-PAH) from soil were tested by adding fertilizer or glycerol, as well as the combination of both. Experiments were carried out for 60 days in reactors containing a HWM-PAH-contaminated soil (8030 μg kg-1), accompanied by pH monitoring, humidity control and quantification of total heterotrophic bacteria and total fungus. Fertilizer addition removed 41.6% of HWM-PAH. Fertilizer and glycerol in combination removed 46.2%. When glycerol was added individually, degradation reached 50.4%. Glycerol also promoted the increase of degradation rate during the first 30 days suggesting the HMW-PAH removal occurred through cometabolic pathways.
Resumo:
Abstract OBJECTIVE To identify the composition of the smoke produced by electrocautery use during surgery. METHOD Integrative review with search for primary studies conducted in the databases of the US National Library of Medicine National Institutes of Health, Cumulative Index to Nursing and Allied Health Literature, and Latin American and Caribbean Health Sciences, covering the studies published between 2004 and 2014. RESULTS The final sample consisted of 14 studies grouped into three categories, namely; polycyclic aromatic hydrocarbons, volatile compounds and volatile organic compounds. CONCLUSION There is scientific evidence that electrocautery smoke has volatile toxic, carcinogenic and mutagenic compounds, and its inhalation constitutes a potential chemical risk to the health of workers involved in surgeries.
Resumo:
Polycyclic aromatic hydrocabons (PAHs) and their nitroderivatives (NPAHs) are ubiquitous in the environment and they are produced in several industrial and combustion processes. Some of these compounds are potent carcinogens/mutagens and their determination in biological samples is an important step for exposure control. A review of the analytical methodologies used for the determination of PAHs and their metabolites in biological samples is presented.
Resumo:
Sediment contamination is evaluated by determining organic micropollutants (organochlorine compounds - OCs and polycyclic aromatic hydrocarbons - PAHs) in two important Brazilian water reservoirs. Trace levels of OCs were observed in the Santana reservoir (44.8 ng g-1 d.w. of p,p'-DDT), while in the Funil reservoir the levels were below detection level. Forty-eight percent of the found sigmaocs were polychlorinated biphenyls, 29% dichlorodiphenyltrichloroethane (DDT), 18% Drins, and 5% other pesticides (HCB, Heptachlor, Heptachlor-epoxide, gamma-HCH and a-Endosulfan). We observed lower levels of sigmaPAH in the Funil reservoir (1 to 275 ng g-1d.w.) than in the Santana reservoir (2.2 to 26.7 µg g-1 d.w.).
Resumo:
This is a review about the use of Blue rayon in the extraction and concentration of environmental contaminants in the aquatic environment. Blue rayon is an adsorbent composed of fibers covalently linked with copper phthalocyanine trisulphonate that has the ability to selectively adsorb polycyclic compounds. Blue rayon can be used in situ, in columns or in flasks. This method showed to be efficient in the extraction of important classes of environmental contaminants like the polycyclic aromatic hydrocarbons (PAHs), aromatic amines and phenylbenzotriazoles (PBTAs) and can be an important tool in monitoring studies for the evaluation of water quality.
Resumo:
Leaking of diesel oil from gas stations is frequent in Brazil. The presence of polycyclic aromatic hydrocarbons (PAHs), which are highly toxic is an indication of contamination by heavy hydrocarbons from diesel oil. Here were present the determination of the distribution coefficient (Kd) of benzo(a)pyrene (the most carcinogenic of the PAHs) in tropical soils using the sorption isotherm model. The sorption curves acquired for benzo(a)pyrene were of the S-type, probably due to the water/methanol experimental conditions. The sorption curves allowed calculation of the distribution coefficient (Kd). The experimental Kd values were lower than those calculated from literature Koc values (partition coefficient normalized by organic carbon), due mainly to the cosolvency effect and the percentage of organic matter and clay in soil.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are a great environmental concern mainly because of their toxic, mutagenic and carcinogenic potential. This paper reports utilization of the solid-phase extraction (SPE) technique to determine PAHs in environmental aqueous matrices. The recovery from environmental aqueous matrices fortified with PAHs varied from 63.7 to 93.1% for atmospheric liquid precipitation, from 38.3 to 95.1% for superficial river water, and from 71.0 to 95.5% for marine water. No negative matrix effect was observed for the recovery of PAHs from atmospheric liquid precipitation and marine water, but was observed for superficial river water, particularly for PAHs possessing 5 and 6 aromatic rings.
Resumo:
The present article presents an assessment of PTS in Brazil including polychlorinated biphenyls, polycyclic aromatic hydrocarbons, benzene hexachloride, aldrin, dieldrin, endrin, p,p,-DDT, p,p,DDE, p,p,-DDD, hexachlorocyclohexanes (alpha-HCH, beta-HCH, gamma-HCH and delta-HCH), endossulfan, heptachlor and pentachlorophenol. The data presented here are related to a survey of PTS levels in different environmental matrixes (soil, sediment, water, air, biota) and human tissues (milk, blood, human hair), according to the scope of the UNEP-GEF Regionally Based Assessment of PTSs. Potential sources were evaluated considering national products and imports, since most of the literature does not allow source identification. Finally, Brazilian legislation was updated.
Resumo:
The objective of this work was to evaluate the environmental distribution of benzo(a)pirene, a polycyclic aromatic hydrocarbon, by the EQC model. The modeling of the contaminant distribution was accomplished by means of the fugacity model applied to a hypothetical scenario constituted by air, water, soil and sediment. The modeling and simulations revealed that the soil is the preferential compartment. We also discuss the implications of the results about fate and ecological risks associated with benzo(a)pirene. We concluded that the emissions of HPAs can not be ignored and bioaccumulation among others risks can be induced.
Resumo:
Extraction and clean-up are essential points in polycyclic aromatic hydrocarbon (PAHs) analysis in a solid matrix. This work compares extraction techniques and clean-up procedures for PAH analysis. PAH levels, their toxicological significance and source were also evaluated in the waters of the Cocó and Ceará rivers. The efficiency of PAH recovery was higher for the soxhlet and ultrasonic techniques. PAH recovery varied from 69.3 to 99.3%. Total PAH concentration (ΣHPA) varied from 720.73 to 2234.76 µg kg-1 (Cocó river) and 96.4 to 1859.21 µg kg-1 (Ceará river). The main PAH sources are pyrolytic processes and the levels were classified as medium so that adverse effects are possible.
Resumo:
This work describes a validation of an analytical procedure for the analysis of petroleum hydrocarbons in marine sediment samples. The proposed protocol is able to measure n-alkanes and polycyclic aromatic hydrocarbons (PAH) in samples at concentrations as low as 30 ng/g, with a precision better than 15% for most of analytes. The extraction efficiency of fortified sediments varied from 65.1 to 105.6% and 59.7 to 97.8%, for n-alkanes and PAH in the ranges: C16 - C32 and fluoranthene - benzo(a)pyrene, respectively. The analytical protocol was applied to determine petroleum hydrocarbons in sediments collected from a marine coastal zone.
Resumo:
The concentration of 15 polycyclic aromatic hydrocarbons (PAHs) in 57 samples of distillates (cachaça, rum, whiskey, and alcohol fuel) has been determined by HPLC-Fluorescence detection. The quantitative analytical profile of PAHs treated by Partial Least Square - Discriminant Analysis (PLS-DA) provided a good classification of the studied spirits based on their PAHs content. Additionally, the classification of the sugar cane derivatives according to the harvest practice was obtained treating the analytical data by Linear Discriminant Analysis (LDA), using naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, benz[b]fluoranthene, and benz[g,h,i]perylene, as a chemical descriptors.
Resumo:
A method using ultrasonication extraction for the determination of 17 polycyclic aromatic hydrocarbons (PAHs), selected by the USEPA and NIOSH as "consent decree" priority pollutants, in soil by High Performance Liquid Chromatography (HPLC) was studied. Separation and detection were completed in 20 min with a C18 columm, acetonitrile-water gradient elution and ultraviolet absorption and fluorescence detections. The detection limits, for a 10 µL of solution injection, were less than 9,917 ng/g in UV detection and less than 1,866 ng/g in fluorescence detection. Several organic solvents were tested for extraction of the 17 PAHs from soils. Acetone was the best solvent among the three solvents tested, and the order of the extraction efficiencies was: acetone>methanol>acetonitrile. Ultrasonication using acetone as solvent extraction was used to evaluate the biodegradation of those compounds in contaminated soil during a vermicomposting process.
Resumo:
Room-temperature phosphorimetry was used to quantify trace levels of chrysene in sugar-cane spirits and in fish bile. A selective phosphorescence enhancer (AgNO3) and synchronous scanning allowed the detection of ng amounts of chrysene. Accuracy (113 ± 17%) and selectivity was evaluated using the CRM-NIST-1647d - Priority Pollutant Polycyclic Aromatic Hydrocarbons in acetonitrile. Analysis of sugar-cane spirit samples enabled recovery of 108 ± 18% which agreed with the one achieved using HPLC. Method's uncertainty was equivalent to 3.4 ng of the analyte, however, the analyte pre-concentration (SPE) improved sensibility and minimized the relative uncertainty. Characterization and homogeneity studies in fish bile were also performed.