26 resultados para Poly(hydroxybutyrate)
em Scielo Saúde Pública - SP
Resumo:
Vero cells, a cell line established from the kidney of the African green monkey (Cercopithecus aethiops), were cultured in F-10 Ham medium supplemented with 10% fetal calf serum at 37°C on membranes of poly(L-lactic acid) (PLLA), poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and their blends in different proportions (100/0, 60/40, 50/50, 40/60, and 0/100). The present study evaluated morphology of cells grown on different polymeric substrates after 24 h of culture by scanning electron microscopy. Cell adhesion was also analyzed after 2 h of inoculation. For cell growth evaluation, the cells were maintained in culture for 48, 120, 240, and 360 h. For cytochemical study, the cells were cultured for 120 or 240 h, fixed, processed for histological analysis, and stained with Toluidine blue, pH 4.0, and Xylidine ponceau, pH 2.5. Our results showed that cell adhesion was better when 60/40 and 50/50 blends were used although cells were able to grow and proliferate on all blends tested. When using PLLA/PHBV (50/50) slightly flattened cells were observed on porous and smooth areas. PLLA/PHBV (40/60) blends presented flattened cells on smooth areas. PLLA/PHBV (0/100), which presented no pores, also supported spreading cells interconnected by thin filaments. Histological sections showed that cells grew as a confluent monolayer on different substrates. Cytochemical analysis showed basophilic cells, indicating a large amount of RNA and proteins. Hence, we detected changes in cell morphology induced by alterations in blend proportions. This suggests that the cells changed their differentiation pattern when on various PLLA/PHBV blend surfaces.
Resumo:
Poly(hydroxybutyrate) and its copolymers are linear polyesters behaving as conventional thermoplastic materials. However, they are totally biodegradable and produced by a wide variety of bacteria from renewable sources. Some properties and high production cost are still preventing future applications. In an attempt to improve the properties and to reduce cost blending PHB with others polymeric materials is one of the most efficient method. In this paper, miscibility, compatibility, morphological and mechanical aspects of PHB blends will be reviewed. An extensive revision over twenty last years was realized about works of blends based on PHB and its copolymers.
Resumo:
Lipase from Thermomyces lanuginosus was covalently immobilized on activated poly-hydroxybutyrate, sugarcane bagasse and the chemically modified hybrid hydrogel chitosan-alginate prepared by different strategies. Among the tested supports, chitosan-alginate chemically modified with 2,4,6-trinitrobenzenesulfonic acid rendered derivatives with the highest hydrolytic activity and thermal-stability, 45-fold more stable than soluble lipase and was then selected for further studies. The pH of maximum activity was similar for both immobilized and free lipase (pH 8.0) while optimum temperature was 5 - 10 ºC higher for the immobilized lipase. Higher yields in the butyl butyrate synthesis were found for the derivatives prepared by activation with glycidol and epichlorohydrin.
Resumo:
This work evaluates the immobilization of Candida antarctica lipase (Fraction B) using poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanoparticles as support. The effects of immobilization time (30-150 min) and pH (5-10) on lipase loading were evaluated. The stability of the immobilized enzyme towards temperature (40, 60, and 80 ºC), reuse and storage (at 4 ºC) were also determined. Furthermore, to assess its potential application in a system of interest, the immobilized lipase was used as a catalyst in the esterification of geraniol with oleic acid. The results indicated a time of 120 minutes and pH of 7 as optimal for immobilization. A 21 hour exposure of the PHBV-lipase derivative to 60 ºC showed a 33% reduction of the initial activity while storage at 4 ºC led to a residual activity (5% of the original activity). The derivative was used without significant loss of activity for 4 successive cycles. The use of the immobilized lipase as a catalyst in the production of geranyl oleate led to about 88% conversion of the initial reactants to products.
Resumo:
Development and selection of an ideal scaffold is of importance for tissue engineering. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) is a biocompatible bioresorbable copolymer that belongs to the polyhydroxyalkanoate family. Because of its good biocompatibility, PHBHHx has been widely used as a cell scaffold for tissue engineering. This review focuses on the utilization of PHBHHx-based scaffolds in tissue engineering. Advances in the preparation, modification, and application of PHBHHx scaffolds are discussed.
Resumo:
OBJECTIVE: To study the mechanism by which poly-L-arginine mediates endothelium-dependent relaxation. METHODS: Vascular segments with and without endothelium were suspended in organ chambers filled with control solution maintained at 37ºC and bubbled with 95% O2 / 5% CO2. Used drugs: indomethacin, acetycholine, EGTA, glybenclamide, ouabain, poly-L-arginine, methylene blue, N G-nitro-L-arginine, and verapamil and N G-monomethyl-L-arginine. Prostaglandin F2á and potassium chloride were used to contract the vascular rings. RESULTS: Poly-L-arginine (10-11 to 10-7 M) induced concentration-dependent relaxation in coronary artery segments with endothelium. The relaxation to poly-L-arginine was attenuated by ouabain, but was unaffected by glybenclamide. L-NOARG and oxyhemoglobin caused attenuation, but did not abolish this relaxation. Also, the relaxations was unaffected by methylene blue, verapamil, or the presence of a calcium-free bathing medium. The endothelium-dependent to poly-L-arginine relaxation was abolished only in vessels contracted with potassium chloride (40 mM) in the presence of L-NOARG and indomethacin. CONCLUSION: These experiments indicate that poly-L-arginine induces relaxation independent of nitric oxide.
Resumo:
The great expansion in the number of genome sequencing projects has revealed the importance of computational methods to speed up the characterization of unknown genes. These studies have been improved by the use of three dimensional information from the predicted proteins generated by molecular modeling techniques. In this work, we disclose the structure-function relationship of a gene product from Leishmania amazonensis by applying molecular modeling and bioinformatics techniques. The analyzed sequence encodes a 159 aminoacids polypeptide (estimated 18 kDa) and was denoted LaPABP for its high homology with poly-A binding proteins from trypanosomatids. The domain structure, clustering analysis and a three dimensional model of LaPABP, basically obtained by homology modeling on the structure of the human poly-A binding protein, are described. Based on the analysis of the electrostatic potential mapped on the model's surface and conservation of intramolecular contacts responsible for folding stabilization we hypothesize that this protein may have less avidity to RNA than it's L. major counterpart but still account for a significant functional activity in the parasite. The model obtained will help in the design of mutagenesis experiments aimed to elucidate the mechanism of gene expression in trypanosomatids and serve as a starting point for its exploration as a potential source of targets for a rational chemotherapy.
Resumo:
Recent work has demonstrated that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron-transport chain triggers several pathways of injury [(protein kinase C (PKC), hexosamine and polyol pathway fluxes, advanced glycation end product formation (AGE)] involved in the pathogenesis of diabetic complications by inhibiting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Increased oxidative and nitrosative stress activates the nuclear enzyme, poly(ADP-ribose) polymerase-1 (PARP). PARP activation, on one hand, depletes its substrate, NAD+, slowing the rate of glycolysis, electron transport and ATP formation. On the other hand, PARP activation results in inhibition of GAPDH by poly-ADP-ribosylation. These processes result in acute endothelial dysfunction in diabetic blood vessels, which importantly contributes to the development of various diabetic complications. Accordingly, hyperglycemia-induced activation of PKC and AGE formation are prevented by inhibition of PARP activity. Furthermore, inhibition of PARP protects against diabetic cardiovascular dysfunction in rodent models of cardiomyopathy, nephropathy, neuropathy, and retinopathy. PARP activation is also present in microvasculature of human diabetic subjects. The present review focuses on the role of PARP in diabetic complications and emphasizes the therapeutic potential of PARP inhibition in the prevention or reversal of diabetic complications.
Resumo:
We have been able to label the excretory system of cercariae and all forms of schistosomula, immature and adult worms with the highly fluorescent dye resorufin. We have shown that the accumulation of the resorufin into the excretory tubules and collecting ducts of the male adult worm depends on the presence of extracellular calcium and phosphate ions. In the adult male worms, praziquantel (PZQ) prevents this accumulation in RPMI medium and disperses resorufin from tubules which have been prelabelled. Female worms and all other developmental stages are much less affected either by the presence of calcium and phosphate ions, or the disruption caused by PZQ. The male can inhibit the excretory system in paired female. Fluorescent PZQ localises in the posterior gut (intestine) region of the male adult worm, but not in the excretory system, except for the anionic carboxy fluorescein derivative of PZQ, which may be excreted by this route. All stages of the parasite can recover from damage by PZQ treatment in vitro. The excretory system is highly sensitive to damage to the surface membrane and may be involved in vesicle movement and damage repair processes. In vivo the adult parasite does not recover from PZQ treatment, but what is inhibiting recovery is unknown, but likely to be related to immune effector molecules.
Resumo:
Polyhydroxyalkanoates (PHAs) are carbon and energy storage materials that are accumulated as intracellular granules in a variety of microorganisms during unbalanced growth. PHAs have drawn attention due to their properties similar to conventional plastics and complete biodegradability. They can be used for food and cosmetics packaging, and in medicine and agriculture. However, their applicability is reduced because of their high production cost compared to conventional plastics. An overview on production strategies of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) aiming at reducing the production costs is presented.
Resumo:
An aliphatic-aromatic copolyester of poly(ethylene terephthalate), PET, and poly(ethylene adipate), PEA, PET-co-PEA, was synthesized by the high temperature melt reaction of post-consumer PET and PEA. As observed by NMR spectroscopy, the reaction yielded random copolyesters in a few minutes through ester-interchange reactions, even without added catalyst. The copolyesters obtained in the presence of a catalyst presented higher intrinsic viscosity than that obtained without the addition of catalyst, due to simultaneous polycondensation and ester-interchange reactions. The structure of the aliphatic-aromatic copolyesters obtained in different PET/PEA ratio is random as observed by NMR analysis.
Resumo:
This work deals with the biodegradation of blends of poly(beta-hydroxybutyrate)/starch and poly(beta-hydroxybutyrate-co-hydroxyvalerate)/starch. The blends were obtained by evaporation of the solvent in the mixture of the polymers in chloroform. Tests were carried out in presence of micro-organisms which acted as biodegradation agents. The blends were consumed as carbon substrate and the production of CO2 was evaluated in the process. In addition, the polyesters' mechanical properties were reduced by the incorporation of starch in its structure. (¹H) NMR and infrared spectroscopy detected some characteristic polyester degradation groups in the polyesters' chemical structure, thus confirming the alteration suffered by it.
Resumo:
Poly (3-hydroxybutyrate) (P(3HB)) is a biopolymer, completely biodegradable, which has similar properties to fuel-based polymers. However to make it economically competitive it is necessary the study of cheap sources of substrate. The influence of hydrolyzed rice starch supplemented with soybean oil at different temperatures (30, 35 and 40 °C) was studied in the production of P(3HB) by C. necator. The percentage of P(3HB) produced in the cultures at 30, 35 °C was 30, 39% and 35, 43% without and with supplementation of oil, respectively. The culture at 40 °C showed no production phase due to a possible oxygen limitation. These results demonstrate that hydrolyzed rice starch supplemented with soybean oil increases the yield of P(3HB) and temperature of 35 ºC is the most favorable for biopolymer production.
Resumo:
Water-in-crude oil emulsions are formed during petroleum production and asphaltenes play an important role in their stabilization. Demulsifiers are added to destabilize such emulsions,however the demulsification mechanism is not completely known. In this paper, the performances of commercial poly(ethylene oxide-b-propylene oxide) demulsifiers were studied using synthetic water-in-oil emulsions and model-systems (asphaltenes in organic solvent). No change in the asphaltene aggregate size induced by the demulsifier was observed. The demulsification performance decreased as the asphaltene aggregate size increased, so it can be suggested that the demulsification mechanism is correlated to the voids between the aggregates adsorbed on the water droplets surface.
Resumo:
Poly(ethylene-co-methyl acrylate) (EMA) and poly (caprolactone) triol (PCL-T) blends, a biodegradable aliphatic polyester with low molecular weight and moderate water solubility containing diltiazem hydrochloride (DZ) were studied in terms of the thermal and morphological properties, and drug release mechanism. An increase in the PCL-T content in the EMA/PCL-T/DZ films decreased the degree of DZ crystallinity. Drug release from these films is temperature-dependent, and it is possible to modify the drug release rate by adjusting the EMA/PCL-T composition of the blends. The mechanism of drug release is governed by PCL-T melting and PCL-T leaching from EMA matrix.