163 resultados para Plant tissues
em Scielo Saúde Pública - SP
Resumo:
In comparison with other micronutrients, the levels of nickel (Ni) available in soils and plant tissues are very low, making quantification very difficult. The objective of this paper is to present optimized determination methods of Ni availability in soils by extractants and total content in plant tissues for routine commercial laboratory analyses. Samples of natural and agricultural soils were processed and analyzed by Mehlich-1 extraction and by DTPA. To quantify Ni in the plant tissues, samples were digested with nitric acid in a closed system in a microwave oven. The measurement was performed by inductively coupled plasma/optical emission spectrometry (ICP-OES). There was a positive and significant correlation between the levels of available Ni in the soils subjected to Mehlich-1 and DTPA extraction, while for plant tissue samples the Ni levels recovered were high and similar to the reference materials. The availability of Ni in some of the natural soil and plant tissue samples were lower than the limits of quantification. Concentrations of this micronutrient were higher in the soil samples in which Ni had been applied. Nickel concentration differed in the plant parts analyzed, with highest levels in the grains of soybean. The grain, in comparison with the shoot and leaf concentrations, were better correlated with the soil available levels for both extractants. The methods described in this article were efficient in quantifying Ni and can be used for routine laboratory analysis of soils and plant tissues.
Resumo:
An efficient flotation method based on the combination of flame atomic absorption spectrometry (FAAS) and separation and preconcentration step for determination of Cr3+, Cu 2+, Co2+, Ni2+, Zn2+, Cd 2+, Fe3+ and Pb2+ ions in various real samples by the possibility of applying bis(2-hydroxyacetophenone)-1,4-butanediimine (BHABDI) as a new collector was studied. The influence of pH, amount of BHABDI as collector, sample matrix, type and amount of eluting agent, type and amount of surfactant as floating agent, ionic strength and air flow rates i.e. variables affecting the efficiency of the extraction system was evaluated. It is ascertained that metal ions such as iron can be separated simultaneously from matrix in the presence of 0.012 mM ligand, 0.025% (w/v) of CTAB to a test sample of 750 mL at pH 6.5. These ions can be eluted quantitatively with 6 mL of 1.0 mol L-1 HNO3 in methanol which lead to the enrichment factor of 125. The detection limits for analyte ions were in the range of 1.3-2.4 ng mL-1. The method has been successfully applied for determination of trace amounts of ions in various real samples.
Resumo:
A better method for determination of shikimate in plant tissues is needed to monitor exposure of plants to the herbicide glyphosate [N-(phosphonomethyl)glycine] and to screen the plant kingdom for high levels of this valuable phytochemical precursor to the pharmaceutical oseltamivir. A simple, rapid, and efficient method using microwave-assisted extraction (MWAE) with water as the extraction solvent was developed for the determination of shikimic acid in plant tissues. High performance liquid chromatography was used for the separation of shikimic acid, and chromatographic data were acquired using photodiode array detection. This MWAE technique was successful in recovering shikimic acid from a series of fortified plant tissues at more than 90% efficiency with an interference-free chromatogram. This allowed the use of lower amounts of reagents and organic solvents, reducing the use of toxic and/or hazardous chemicals, as compared to currently used methodologies. The method was used to determine the level of endogenous shikimic acid in several species of Brachiaria and sugarcane (Saccharum officinarum) and on B. decumbens and soybean (Glycine max) after treatment with glyphosate. The method was sensitive, rapid and reliable in all cases.
Resumo:
Nitrogen and K deficiency are among the most yield limiting factors in Brazilian pastures. The lack of these nutrients can hamper the chlorophyll biosynthesis and N content in plant tissues. A greenhouse experiment was carried out to evaluate the relationship among N and K concentrations, the indirect determination of chlorophyll content (SPAD readings), nitrate reductase activity (RNO3-) in newly expanded leaf lamina (NL) and the dry matter yield for plant tops of Mombaça grass (Panicum maximum Jacq.). A fractionated 5² factorial design was used, with 13 combinations of N and K rates in the nutrient solution. The experimental units were arranged in a randomized block design, with four replications. Plants were harvested twice. The first harvest occurred 36 days after seedling transplanting and the second 29 days after the first. Significance occurred for the interaction between the N and K rates to SPAD readings and to RNO3- assessment taken on the NL during the first growth. Besides, RNO3- and SPAD readings increased only with the NL N concentration, reaching the highest values of both variables up to about 25 g kg-1, but were ratively constant at higher leaf N. Significant relationships either between SPAD readings or RNO3- activity and shoot dry mass weight were also observed. The critical levels of N concentration in the NL were, respectively, 22 and 17g kg-1 in the first and second harvest. Thus, SPAD instrument and RNO3- assessment can be used as complementary tools to evaluate the N status in forage grass.
Resumo:
Laboratory and greenhouse experiments were conducted to evaluate the phytotoxic effect of black mustard extracts and root exudates on two crops: Trifolium alexandrinum and Triticum aestivum, and two weeds: Phalaris paradoxa and Sisymbrium irio. The seeds were treated with aqueous and ethanolic extracts and chloroform for eight days, or subjected to root exudates of just harvested mustard in a greenhouse for five weeks. High-performance liquid chromatography (HPLC) was used to quantify phytotoxins from plant tissues. Seed germination of P. paradoxa was reduced with the lowest concentration of the different extracts. However, the aqueous extract at 4% completely curtailed the germination of all the target species. In general, plant extracts had a concentration-dependent reduction of seedling growth of the target species. However, the ethanolic extract, at the lowest concentration, has stimulated the shoot length of both T. alexandrinum and T. aestivum, and the root length of the former. Mustard root exudates inhibited emergence and growth of the target species throughout the experiment. Ferulic and syringic acids were the dominant allelochemicals found when HPLC was used.
Resumo:
Shoot biomass is considered a relevant component for crop yield, but relationships between biological productivity and grain yield in legume crops are usually difficult to establish. Two field experiments were carried out to investigate the relationships between grain yield, biomass production and N and P accumulation at reproductive stages of common bean (Phaseolus vulgaris) cultivars. Nine and 18 cultivars were grown on 16 m² plots in 1998 and 1999, respectively, with four replications. Crop biomass was sampled at four growth stages (flowering R6, pod setting R7, beginning of pod filling R8, and mid-pod filling R8.5), grain yield was measured at maturity, and N and P concentrations were determined in plant tissues. In both years, bean cultivars differed in grain yield, in root mass at R6 and R7 stages, and in shoot mass at R6 and R8.5, whereas at R7 and R8 differences in shoot mass were significant in 1998 only. In both years, grain yield did not correlate with shoot mass at R6 and R7 and with root mass at R6. Grain yield correlated with shoot mass at R8 in 1999 but not in 1998, with shoot mass at R8.5 and with root mass at R7 in both years. Path coefficient analysis indicated that shoot mass at R8.5 had a direct effect on grain yield in both years, that root mass at R7 had a direct effect on grain yield in 1998, and that in 1999 the amounts of N and P in shoots at R8.5 had indirect effects on grain yield via shoot mass at R8.5. A combined analysis of both experiments revealed that biomass accumulation, N and P in shoots at R6 and R7 as well as root mass at R6 were similar in both years. In 1998 however bean accumulated more root mass at R7 and more biomass and N and P in shoots at R8 and R8.5, resulting in a 57 % higher grain yield in 1998. This indicates that grain yield of different common bean cultivars is not intrinsically associated with vegetative vigor at flowering and that mechanisms during pod filling can strongly influence the final crop yield. The establishment of a profuse root system during pod setting, associated with the continuous N and P acquisition during early pod filling, seems to be relevant for higher grain yields of common bean.
Resumo:
Eucalyptus Shoot Blight in the Vale do Rio Doce (ESBVRD) is an anomaly that leads to reduced growth and, in more extreme cases, to death of eucalyptus plants. Initially diagnosed in plantations in the region of the Vale do Rio Doce, in the State of Minas Gerais, Brazil, this problem has also been found in plantations in other regions of the country and even in other countries. Although the symptoms of this anomaly are well-known, its causes are not yet understood. The aim of this study was to evaluate the cause-effect relationship between accumulation of manganese (Mn) in eucalyptus clones and ESBVRD. Characterization of the environment in areas of greater occurrence of this problem in regard to soil, climate and fluctuation of the water table was undertaken in eucalyptus plantations of the Celulose Nipo-brasileira S.A. (Cenibra) company in the region of the Vale do Rio Doce. Plant tissues were sampled in two situations. In the first situation, diagnosis occurred in the initial phase of the anomaly in clones with differentiated tolerance to the problem; in the second situation, diagnosis was made in a single clone, considered to be sensitive, in two time periods - in the phase with the strong presence of symptoms and in the recovery phase, in areas of occurrence and in areas of escape from the problem. The most ESBVRD-sensitive clone showed much higher (4.8 times higher) leaf Mn contents than more tolerant clones. In plants with the anomaly, Mn leaf contents were greater than 3,070 mg kg-1, much greater than the quantity found in those without the anomaly (734 mg kg-1). In the period in which the symptoms began to wane, there was a sharp decline in leaf Mn contents, from 2,194 to 847 mg kg-1. Manganese content in the above ground part and plant litter (44.4 g ha-1) in the area of occurrence of the anomaly was three times greater than that found in these same components (14.1 g ha-1) in the area of absence of the symptom. Based on the evidence found, such as the existence of environmental conditions favorable to high Mn availability to the plants in the areas of greatest incidence of ESBVRD, greater uptake of Mn in sensitive clones and in plants with symptoms, and a synchronism between the intensity of symptoms of ESBVRD and leaf Mn contents, it may be inferred that temporary excess of Mn in eucalyptus plants is closely related to ESBVRD.
Resumo:
Information underlying analyses of coffee fertilization systems should consider both the soil and the nutritional status of plants. This study investigated the spatial relationship between phosphorus (P) levels in coffee plant tissues and soil chemical and physical properties. The study was performed using two arabica and one canephora coffee variety. Sampling grids were established in the areas, and the points georeferenced. The assessed properties of the soil were levels of available phosphorus (P-Mehlich), remaining phosphorus (P-rem) and particle size, and of the plant tissue, phosphorus levels (foliar P). The data were subjected to descriptive statistical analysis, correlation analysis, cluster analysis, and probability tests. Geostatistical and trend analyses were only performed for pairs of variables with significant linear correlation. The spatial variability for foliar P content was high for the variety Catuai and medium for the other evaluated plants. Unlike P-Mehlich, the variability in P-rem of the soil indicated the nutritional status of this nutrient in the plant.
Resumo:
Tissue analysis is a useful tool for the nutrient management of fruit orchards. The mineral composition of diagnostic tissues expressed as nutrient concentration on a dry weight basis has long been used to assess the status of 'pure' nutrients. When nutrients are mixed and interact in plant tissues, their proportions or concentrations change relatively to each other as a result of synergism, antagonism, or neutrality, hence producing resonance within the closed space of tissue composition. Ternary diagrams and nutrient ratios are early representations of interacting nutrients in the compositional space. Dual and multiple interactions were integrated by the Diagnosis and Recommendation Integrated System (DRIS) into nutrient indexes and by Compositional Nutrient Diagnosis into centered log ratios (CND-clr). DRIS has some computational flaws such as using a dry matter index that is not a part as well as nutrient products (e.g. NxCa) instead of ratios. DRIS and CND-clr integrate all possible nutrient interactions without defining an ad hoc interactive model. They diagnose D components while D-1 could be diagnosed in the D-compositional Hilbert space. The isometric log ratio (ilr) coordinates overcome these problems using orthonormal binary nutrient partitions instead of dual ratios. In this study, it is presented a nutrient interactive model as well as computation methods for DRIS and CND-clr and CND-ilr coordinates (CND-ilr) using leaf analytical data from an experimental apple orchard in Southwestern Quebec, Canada. It was computed the Aitchison and Mahalanobis distances across ilr coordinates as measures of nutrient imbalance. The effect of changing nutrient concentrations on ilr coordinates are simulated to identify the ones contributing the most to nutrient imbalance.
Resumo:
Biogenic silica is used to describe compounds of hydrated silica (SiO2.nH2O), with specific shapes and sizes, deposited in plants. The chemical composition of biogenic silica and its stability in Jaraguá grass was studied in increasing concentration of NaOH. The analytical results demonstrated high concentration of Si, Al, Fe, Mg, P and low of Cu, Cd and Zn in the phytoliths composition. The silica bodies stability in NaOH solution with increasing concentration was different among the shapes and sizes. Silicified stomata and silicified plant tissues were dissolved along with the dumbbells because they are the less stable forms of biogenic silica.
Resumo:
Immediately after planting, tree seedlings face adverse environmental and biotic stresses that must be overcome to ensure survival and to yield a desirable growth. Hardening practices in the nursery may help improve seedling stress resistance through reduction of aboveground plant tissues and increased root volume and biomass. We conducted an assay to quantify changes in the morphogenesis following application of ethephon on seedlings of Pachystroma longifolium (Ness) I. M. Johnst.during hardening. The results showed no effect of the ethephon treatments on the number of leaves but a reduction of up to 50% in seedling height increment, and an increase in stem diameter increment of up to 44% with the 600 mg L-1 ethephon treatment, which consequently altered seedling Dickson Quality Index. Our results indicate that ethephon may help to promote desired morphological changes that occur during seedling hardening in nurseries.
Resumo:
ABSTRACT The essay objective was to correlate lignin content resulting from tigmomorphogenesis induced by stem swaying with survival and post-planting growth of P. taeda seedlings. Seedlings were subjected to daily frequencies (0, 5, 10, 20 and 40 movements) of stem swaying for 60 days. By the end of the treatments, we determined lignin content of below and aboveground seedling tissues. Four replicates per treatment were planted in a area cultivated with pines. Ninety days after planting, survival and increments of seedling height, stem diameter and stem volume were quantified. Application of 20 stem swayings increased lignin in both below and aboveground plant tissues. Outplanted seedling survival was reduced with 40 stem swayings while growth increments were increased with both 10 and 20 stem swayings. Lignin content from belowground plant tissues was positively correlated with outplanted seedling survival while lignin from aboveground tissues correlated with height and stem volume increments. P. taeda seedlings with higher lignin content have higher survival chances after planting.
Resumo:
The experiment was carried out aiming to analyze the dry mass production and distribution and the content and accumulation of macronutrients in sourgrass (Digitaria insularis) plants cultivated under mineral nutrition standard conditions. Plants grew in 7-liter pots filled with sand substrate and daily irrigated with nutrient solution, being maintained under greenhouse conditions. Treatments consisted of times of evaluation (21, 35, 49, 63, 77, 91, 105, 119, and 133 days after emergence - DAE) and were arranged in a completely randomized design with four replicates. Sourgrass showed small accumulation of dry mass (0.3 g per plant) and macronutrients (3.7 mg of N per plant, 0.4 mg of P per plant, 5.6 mg of K per plant, 0.9 mg of Ca per plant, 0.7 mg of Mg per plant, and 0.3 mg of S per plant) at vegetative growth stage (< 49 DAE). Those accumulations increased mainly after 77 DAE, reaching the maximum theoretical value at 143, 135, 141, 129, 125, 120, and 128 DAE, for dry mass (12.4 g per plant), N (163.2 mg per plant), P (27.1 mg per plant), K (260.5 mg per plant), Ca (47.6 mg per plant), Mg (30.9 mg per plant), and S (13.7 mg per plant), respectively. K and N were found with higher rates and, as a consequence, they were required and accumulated in greater amounts in plant tissues of sourgrass.
Resumo:
This study has aimed to develop a method for simultaneous extraction and determination by liquid chromatography and mass spectrometry (LC-MS/MS) of glyphosate, aminomethylphosphonic acid (AMPA), shikimic acid, quinic acid, phenylalanine, tyrosine and tryptophan. For the joint analysis of these compounds the best conditions of ionization in mass spectrometry and for chromatographic separation of the compounds were selected. Calibration curves and linearity ranges were also determined for each compound. Different extraction systems of the compounds were tested from plant tissues collected from sugarcane (Saccharum officinarum) and eucalyptus (Eucalyptus urophylla platiphylla) plants two days after the glyphosate application at the dose of 720 g a.e. ha-1. The plant material was dried in a forced air circulation drying oven and in a lyophilizer, and subsequently the extractions with acidified water (pH 2.5), acetonitrile-water (50:50) [v/v] and methanol-water (50:50) [v/v] were tested. To verify the recovery of the compounds in the plant matrix with acidified water as an extracting solution, the samples were fortified with a solution containing the mixture of the different analytical standards present so that this one presented the same levels of 50 and 100 μg L-1 of each compound. All experiments were conducted with three replicates. The analytical method developed was efficient for compounds quantifications. The extraction from the samples dried in an oven and using acidified water allowed better extraction levels for all compounds. The recovery levels of the compounds in the fortified samples with known amounts of each compound for both plants samples were rather satisfactory.
Resumo:
1. Fish oils are rich in the long-chain n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids. Linseed oil and green plant tissues are rich in the precursor fatty acid, a-linolenic acid (18:3n-3). Most vegetable oils are rich in the n-6 PUFA linoleic acid (18:2n-6), the precursor of arachidonic acid (20:4n-6). 2. Arachidonic acid-derived eicosanoids such as prostaglandin E2 are pro-inflammatory and regulate the functions of cells of the immune system. Consumption of fish oils leads to replacement of arachidonic acid in cell membranes by eicosapentaenoic acid. This changes the amount and alters the balance of eicosanoids produced. 3. Consumption of fish oils diminishes lymphocyte proliferation, T-cell-mediated cytotoxicity, natural killer cell activity, macrophage-mediated cytotoxicity, monocyte and neutrophil chemotaxis, major histocompatibility class II expression and antigen presentation, production of pro-inflammatory cytokines (interleukins 1 and 6, tumour necrosis factor) and adhesion molecule expression. 4. Feeding laboratory animals fish oil reduces acute and chronic inflammatory responses, improves survival to endotoxin and in models of autoimmunity and prolongs the survival of grafted organs. 5. Feeding fish oil reduces cell-mediated immune responses. 6. Fish oil supplementation may be clinically useful in acute and chronic inflammatory conditions and following transplantation. 7. n-3 PUFAs may exert their effects by modulating signal transduction and/or gene expression within inflammatory and immune cells.