8 resultados para Photophysical

em Scielo Saúde Pública - SP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photophysical properties of zinc phthalocyanine (ZnPC) and chloroaluminum phthalocyanine (AlPHCl) incorporated into liposomes of dimyristoyl phosphatidylcholine in the presence and absence of additives such as cholesterol or cardiolipin were studied by time-resolved fluorescence, laser flash photolysis and steady-state techniques. The absorbance of the drugs changed linearly with drug concentration, at least up to 5.0 µM in homogeneous and heterogeneous media, indicating that aggregation did not occur in these media within this concentration range. The incorporation of the drugs into liposomes increases the dimerization constant by one order of magnitude (for ZnPC, 3.6 x 10(4) to 1.0 x 10(5) M-1 and for AlPHCl, 3.7 x 10(4) to 1.5 x 10(5) M-1), but this feature dose does not rule out the use of this carrier, since the incorporation of these hydrophobic drugs into liposomes permits their systemic administration. Probe location in biological membranes and predominant positions of the phthalocyanines in liposomes were inferred on the basis of their fluorescence and triplet state properties. Both phthalocyanines are preferentially distributed in the internal regions of the liposome bilayer. The additives affect the distribution of these drugs within the liposomes, a fact that controls their delivery when both are used in a biological medium, retarding their release. The addition of the additives to the liposomes increases the internalization of phthalocyanines. The interaction of the drugs with a plasma protein, bovine serum albumin, was examined quantitatively by the fluorescence technique. The results show that when the drugs were incorporated into small unilamellar liposomes, the association with albumin was enhanced when compared with organic media, a fact that should increase the selectivity of tumor targeting by these phthalocyanines (for ZnPC, 0.71 x 10(6) to 1.30 x 10(7) M-1 and for AlPHCl, 4.86 x 10(7) to 3.10 x 10(8) M-1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carotenoid polyenes play a wide role in nature and their photophysical properties make of these pigments a focus of research in photochemistry, photobiology and photomedicine. Some aspects of the singlet and triplet states and, their interaction with molecular and singlet oxygen and free radicals are briefly reviewed in this article.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The initiation step of the light-induced polymerization kinetics of vinyl monomers using dye-sensitized photoinitiators to generate active radicals is discussed. The photoredox processes of basic dyes with amines and sulfinates are described as photochemical systems capable of starting free-radical polymerization of vinyl monomers in homogeneous and microheterogeneous media. Photophysical techniques like laser flash photolysis and time-correlated single photon counting are used to investigate the excited-state kinetics of the dyes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthetic procedures, characterization and luminescent properties of Eu3+ and Tb3+ ions supported on silica gel functionalized with beta-diketones are presented. The functionalization with propyl benzoyltrifluoroacetone (BPG), dibenzoylmethane (DBM) and hexafluoroacetone (HPG), leads to new luminescent materials which photophysical properties depend on the group substituent in the beta-diketone. These systems were evaluated in terms of luminescence and lifetime of the Eu3+ and Tb3+ ions. Silica functionalization was confirmed by TGA and Elemental Analysis. The sample contents of ions were from 0,2 to 0,3 % (w/w).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work reports on the synthesis, characterization (infrared and hidrogen nmr spectra) and photophysical properties (luminescence spectra and emission quantum yield) of the lanthanide cryptates [LnÌ(bipy)2py(CO2Et) 2]3+ with Ln = Eu3+, Tb3+ or Gd3+, which can be applied as efficient Light-Conversion-Molecular-Devices. From emission spectra of [EuÌ(bipy)2py(CO2Et) 2]3+ it was possible to assign C3 symmetry to the metal ion. The spectroscopic studies show a higher emission quantum yield (q=25%) for [TbÌ(bipy)2py(CO2Et) 2]3+ in aqueous solution, whereas the europium cryptate presents q=14%. This is justified by a more efficient energy transfer between triplet and emission levels of terbium (T->5D4).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we present an overview of electroluminescent devices that use conjugated polymers as the active media. The principal components of the devices are described and we show some examples of conjugated polymers and copolymers usually employed in polymeric light emitting devices (PLED). Some aspects of the photo and electroluminescence properties as well as of the energy transfer processes are discussed. As an example, we present some of the photophysical properties of poly(fluorene)s, a class of conjugated polymers with blue emission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work focus on the influence of solvent on the photophysical properties of chlorophyll α and pheophytin. Both compounds are related to the photosynthesis process and are considered prototypes of photosensitizers in Photodynamic Therapy. Fluorescence measurements were developed using water/ethanol mixtures at different compositions, since both solvents could be employed in biological applications. The spectroscopic properties of these compounds undergo profound changes depending on water content in the ethanol due to auto-aggregation processes. The major hydrophobicity and the lower dielectric constant of ethanol when compared with water precluded significantly the auto-aggregation process of these compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photodynamic therapy is a well-established and clinically approved treatment for several types of cancer. Antineoplastic photodynamic therapy is based on photosensitizers, i.e., drugs that absorb photons translating light energy into a chemical potential that damages tumor tissues. Despite the encouraging clinical results with the approved photosensitizers available today, the prolonged skin phototoxicity, poor selectivity for diseased tissues, hydrophobic nature, and extended retention in the host organism shown by these drugs have stimulated researchers to develop new formulations for photodynamic therapy. In this context, due to their amphiphilic characteristic (compatibility with both hydrophobic and hydrophilic substances), liposomes have proven to be suitable carriers for photosensitizers, improving the photophysical properties of the photosensitizers. Moreover, as nanostructured drug delivery systems, liposomes improve the efficiency and safety of antineoplastic photodynamic therapy, mainly by the classical phenomenon of extended permeation and retention. Therefore, the association of photosensitizers with liposomes has been extensively studied. In this review, both current knowledge and future perspectives on liposomal carriers for antineoplastic photodynamic therapy are critically discussed.