126 resultados para Phosphorus solubilization
em Scielo Saúde Pública - SP
Resumo:
Rock phosphates have low solubility in water, but good solubility in acid. The use of organic compounds together with these phosphorus sources applied to the basal leaf axils of pineapple can increase the solubility of this phosfate source and increase the P availability to the crop. A greenhouse experiment was conducted using Araxá rock phosphate (10 g) in combination or not with solutions containing increasing concentrations of humic acids (0 to 40 mmol L-1 of carbon), with or without citric acid (0.005 mmol L-1), applied to basal leaf axils of pineapple cv. Pérola. Growth and nutritional characteristics of aerial plant parts were assessed. Growth rates of aerial parts and N, P, K, Ca and Mg contents increased curvilinearly with increasing concentration of carbon in the form of humic acids. Maximum values were found for the concentration of 9.3 mmol L-1 of carbon combined with 0.005 mmol L-1 of citric acid and natural phosphate.
Resumo:
Studies on nutritional efficiency of phosphorus in conilon coffee plants are important tools to unravel the high limitation that natural low levels of this nutrient in soil impose to these species cultivars. Therefore, this study aimed at evaluating the nutritional efficiency and the response to phosphorus of conilon coffee clones. Plants were managed during 150 days in pots containing 10 dm³ of soil, in greenhouse. A factorial scheme 13 x 2 was used, with three replications, being the factors: 13 clones constituting the clonal cultivar "Vitória Incaper 8142" and two levels of phosphate fertilization (0% and 150% of the P2O5 usualy recommended), in a completely randomized design (CRD). The results indicate a differentiated response of dry matter production and of phosphorus content on each level of phosphate fertilization for the conilon coffee clones and that CV-04, CV-05 and CV-08 clones are nutritionally efficient and responsive to the phosphate fertilization.
Resumo:
The objective of this study was to evaluate the effect of the fungus Aspergillus niger strain CCT4355 in the release of nutrients contained in two types of rock powder (diabase and phonolite) by means of in vitro solubilization trials. The experimental design was completely randomized in a 5 x 4 factorial design with three replications. It was evaluated five treatments (phonolite dust + culture medium; phonolite dust + fungus + culture medium; diabase powder + culture medium; diabase powder + fungus + culture medium and fungus + culture medium) and four sampling dates (0, 10, 20 and 30 days). Rock dust (0.4% w/v) was added to 125 mL Erlenmeyer flasks containing 50 mL of liquid culture medium adapted to A. niger. The flasks were incubated at 30°C for 30 days, and analysis of pH (in water), titratable acidity, and concentrations of soluble potassium, calcium, magnesium, zinc, iron and manganese were made. The fungus A. niger was able to produce organic acids that solubilized ions. This result indicates its potential to alter minerals contained in rock dust, with the ability to interact in different ways with the nutrients. A significant increase in the amount of K was found in the treatment with phonolite dust in the presence of the fungus. The strain CCT4355 of A. niger can solubilize minerals contained in these rocks dust.
Resumo:
Light and soil water availability may limit carbon uptake of trees in tropical rainforests. The objective of this work was to determine how photosynthetic traits of juvenile trees respond to variations in rainfall seasonality, leaf nutrient content, and opening of the forest canopy. The correlation between leaf nutrient content and annual growth rate of saplings was also assessed. In a terra firme rainforest of the central Amazon, leaf nutrient content and gas exchange parameters were measured in five sapling tree species in the dry and rainy season of 2008. Sapling growth was measured in 2008 and 2009. Rainfall seasonality led to variations in soil water content, but it did not affect leaf gas exchange parameters. Subtle changes in the canopy opening affected CO2 saturated photosynthesis (A pot, p = 0.04). Although A pot was affected by leaf nutrient content (as follows: P > Mg > Ca > N > K), the relative growth rate of saplings correlated solely with leaf P content (r = 0.52, p = 0.003). At present, reduction in soil water content during the dry season does not seem to be strong enough to cause any effect on photosynthesis of saplings in central Amazonia. This study shows that leaf P content is positively correlated with sapling growth in the central Amazon. Therefore, the positive effect of atmospheric CO2 fertilization on long-term tree growth will depend on the ability of trees to absorb additional amount of P
Resumo:
ABSTRACT The indiscriminate use of mineral fertilizers in papaya orchards has increased production costs, and the use of arbuscular mycorrhizal fungi is a promising alternative to reduce such expenses. Therefore, the present research aimed at studying the efficiency of arbuscular mycorrhizal fungi (AMF) on dry matter and nutrient accumulation in Sunrise Solo papaya seedlings, by applying doses of P2O5 (triple superphosphate) that are harmful to the symbiosis. The experiment was carried out in a protected environment and was set up in a randomized block design with four replications, and consisted of four P2O5 doses (0, 672, 1386 and 2100 mg dm-3), three mycorrhizal fungi species (Gigaspora margarita, Entrophospora colombiana and Scutellospora heterogama) and the control treatment (mycorrhiza-free). Shoot and root dry matter as well as nitrogen, phosphorus and potassium contents in leaf and root tissues were assessed. Mycorrhizal inoculation promoted a 30% increase in shoot dry matter in relation to the control treatment. Mycorrhizal fungi promoted increases in leaf and root nitrogen content up to 672 mg dm-3 P2O5. Inoculation of E. colombiana favored the highest gains in root and shoot dry matter. P2O5 fertilization increased foliar and root phosphorus content.
Resumo:
ABSTRACT In areas cultivated under no-tillage system, the availability of phosphorus (P) can be raised by means of the gradual corrective fertilization, applying phosphorus into sowing furrows at doses higher than those required by the crops. The objective of this work was to establish the amount of P to be applied in soybean crop to increase content of P to pre-established values at the depth of 0.0 to 0.10 m. An experiment was carried out on a clayey Haplorthox soil with a randomized block experimental design distributed in split-split plot, with four replications. Two soybean crop systems (single or intercropped with Panicum maximum Jaca cv. Aruana) were evaluated in the plots. In addition, it was evaluated four P levels (0, 60, 120 and 180 kg ha-1 P2O5) applied in the first year in the split plots; and four P levels (0, 30, 60 and 90 kg ha-1 P2O5) applied in the two subsequent crops in the split-split plot. Contents of P were extracted by Mehlich-1 and Anion Exchange Resin methods from soil samples collected in the split-split plot. It was found that it is necessary to apply 19.4 or 11.1 kg ha-1 of P2O5, via triple superphosphate as source, to increase 1 mg dm-3 of P extracted by Mehlich-1 or Resin, respectively, in the 0.0 to 0.10 m layer of depth. The soil drain P character decreases as the amount of this nutrient supplied in the previous crops is increased.
Resumo:
Fields of murundus (FM) are wetlands that provide numerous ecosystem services. The objectives of this study were to evaluate the chemical [organic carbon (OC), P, K+, Ca2+, Mg2+, Al3+ and H+Al] and physical [texture and bulk density (Bd)] soil attributes and calculate the organic matter (OM) and nutrient stock (P, Ca, Mg, and K) in soils of FM located in the Guapore River basin in Mato Grosso. Thirty-six sampling points were selected, and soil samples were collected from two environments: the murundu and plain area surrounding (PAS). At each sampling point, mini trenches of 0.5 × 0.5 × 0.4 m were opened and disturbed and undisturbed soil samples were collected at depths of 0-0.1, 0.1-0.2, and 0.2-0.4 m. In the Principal Component Analysis the variables H+Al (49%) and OM (4%) were associated with the F1 component and sand content (47%) with the F2 component. The FM had lower pH values and higher concentrations of K+, P, and H+Al than PAS at all depths (p < 0.05). Additionally, FM stocked up to 433, 360, 205, and 11 kg ha-1 of Ca, Mg, K, and P, respectively, for up to a depth of 0.2 m. The murundu stored two times more K and three times more P than that in the PAS. Our results show that the FM has high sand content and Bd greater than 1.5 Mg m-3, high acidity, low OC content, and low nutrient concentrations. Thus, special care must be taken to preserve FM such that human intervention does not trigger environmental imbalances.
Resumo:
This paper deals with a modification in the solubilization technique of natural phophates in the 2% citric acid solution. The proposed technique is as follows: 2,5 g of phosphatic material and 250 ml of 2% citric acid solution, in a 500 ml Erlenmeyer flask, are shaken for 30 minutes at 30-40 rpm. The phosphorus (P2O5) was determined by the usual method. The data obtained were compared with the conventional technique in which a Stohmann bottle is used. The natural phosphates used were: Phosphorita de Olinda (Pernambuco), Flórida Phosphate (USA) and Hiperphosphate (África). Statistical analysis was applied to the data and the following conclusions were arrived at: a) The precision is equivalent in both techniques. b) There is no significant variation between the means obtained with the two technique.
Resumo:
O atual conhecimento relativo à distribuição em percentagem das várias frações de enxofre nos solos provem principalmente dos estudos dos solos de regiões temperadas. Em vista disso, este estudo foi conduzido para determinar as frações do S e as relações C-N-P-S em alguns solos da região subtropical dos Estados de São Paulo e do Paraná, Brasil, e comparar estes valores nestes solos com aqueles nos solos do Estado de Iowa, dos Estados Unidos da América do Norte. As análises das frações de enxofre nos solos dos dois países, indicaram que os solos do Brasil contem sulfato inorgânico adsorvido. Expressos como percentagem do S total, os solos do Brasil acusaram de 5 a 23% (média 11%) de S-sulfato inorgânico, de 20 a 65% (média 40%) de S-ester sulfato, de 5 a 12% (média 7%) de S-ligado ao Carbono e de 24 a 59% (média 42%) de S orgânico não identificado. As percentagens correspondentes nos solos de Iowa foram de 2 a 8% (média 5%) de S-sulfato inorgânico, de 43 a 60% (média 50%) de S-ester sufato, de 7 a 18% (média 11%) de enxofre ligado ao carbono e de 30 a 39% (média 34%) de S orgânico, não identificado. Outrossim, não foi encontrado o enxofre inorgânico não-sulfato em nenhum dos solos analisados. Houve grandes variações nas relações C, N, Ρ e S entre solos brasileiros quando comparados com aqueles do Iowa.
Resumo:
A localização do superfosfato (marcado com P32) no maracujá em produção foi estudada em condições de plantação comercial. Verificou-se que as aplicações em sulcos circulares ou faixas superficiais ao redor da planta tem eficiência equivalente sendo esses métodos três vezes superiores à localização do adubo em furos no solo. A pulverização foliar, por sua vez, mostrou-se 20 vezes mais eficiente que a aplicação no solo de acordo com os dois primeiros métodos.
Resumo:
1. Tagged superphosphate was applied to 2.5 year old passion fruit plants from a commercial plantation established in a sandy loam. 2. 100 grams of the fertilizer were distributed in the following ways: in a circular furrow 20 cm around the plant 40 cm from the stems; in a circular strip 10 cm wide, 40 cm from the stems; in six holes around the plants, 40 cm from the stems 20 cm deep, 2.5 cm in diameter. 3. 10 grams of the fertilizer in 11 of water were sprayed to the leaves. 4. Three weeks after the treatments were made, leaf samples were taken for analysis. 5. Determinations of specific activities both in the leaves and in the fertilizer used have shown that R in the plant was derived from the superphosphate in the following relative proportions (by making the first treatment equal to 100): circular furrow = 100; circular strip = 120; holes = 30; foliar spray = 230.
Resumo:
As a rule, soils of the subtropical and tropical regions, in which rainfall is not limiting, are acidic, and low in phosphorus, and, to a less extent, in other macro and micronutrients as well, such a sulfur, boron and zinc. The establishment of a permanent agricultural prac. tice therefore, demands relatively high usage of liming and phosphatic fertilization, to begin with. Several approaches, not mutually exclusive, could be used in order to increase the efficiency of utilization of soil and fertilizer phosphorus so that, goal of diminishing costs of production is reached. The use of liming materials bringing up pH to 6.0-6.5 causes the conversion of iron and aluminum phosphates to more available calcium phosphates; on the other hand, by raising calcium saturation in the exchange complex, it improves the development and operation if the root system which allows c or a higher utilization of all soil nutrients, including phosphorus, and helps of stand water deficits which may occur. The role of mycorrhizal fungi should be considered as a way of increasing soil and fertilizer P utilization, as well as the limitations thereof. Screening of and breeding for varieties with higher efficiency of uptake and utilization of soil and fertilizer phosphorus leads to a reduction in cost of inputs and to higher benefit/cost ratios. Corrective fertilization using ground rock phosphate helps to saturate the fixation power of the soil thereby reducing, as a consequence, the need for phosphorus in the maintenance fertilization. Maintenance fertilization, in which soluble phos-phatic sources are used, could be improved by several means whose performance has been proved: limimg, granula tion, placement, use of magnesium salts. Last, cost of phosphate fertilization could be further reduced, without impairing yields, through impairing yields, through changes in technology designed to obtain products better adapted to local conditions and to the availability or raw materials and energy sources.
Resumo:
The distribution of the surface proteins of toxoplasma gondii radiodinated were studied using the phase separation technique and ability of binding in the phenyl-Sepharose column. Eight polypeptides with Mr 22 to 180 distributed exclusively in the detergent rich-phase, while six polypeptides with mol. wt. 15,000 to 76,000 distributed exclusively in the detergent poor-phase. Twopolypeptides with 15,000 and 70,000 distributed on both phase. All the polypeptides present in the detergent rich-phase binding in the phenyl-Sepharose column, and can be isolated in two peak according with their relative hydrophobicities.two polypeptides hydrophobic with Mr 60 and 66 recognized by human serum were isolated by the association of the two technique. Our result showed that the surface proteins of t. gondii present different degrees of hydrophobicity and that the use of hydrophobic interaction chromatography after Triton X-114 extraction may be an important isolation method of membrane proteins.
Resumo:
Liming is a common practice to raise soil pH and increase phosphorus (P) bioavailability in tropical regions. However, reports on the effect of liming on P sorption and bioavailability are controversial. The process of phosphorus desorption is more important than P sorption for defining P bioavailability. However few studies on the relationship between soil pH and P desorption are available, and even fewer in the tropical soils. The effects of soil pH on P sorption and desorption in an Ultisol from Bahia, Brazil, were investigated in this study. Phosphorus sorption decreased by up to 21 and 34 % with pH increases from 4.7 to 5.9 and 7.0, respectively. Decreasing Langmuir K parameter and decreasing partition coefficients (Kd) with increasing pH supported this trend. Phosphorus desorption was positively affected by increased soil pH by both the total amount of P desorbed and the ratio of desorbed P to initially sorbed P. A decreased K parameter and increased Kd value, particularly at the highest pH value and highest P-addition level, endorsed this phenomenon. Liming the soil had the double effect of reducing P sorption (up to 4.5 kg ha-1 of remaining P in solution) and enhancing P desorption (up to 2.7 kg ha-1 of additionally released P into solution).