24 resultados para Phosphoinositide-dependent Kinase

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the effect of propofol pretreatment on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the role of the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathway in this procedure. Survival was determined 48 h after LPS injection. At 1 h after LPS challenge, the lung wet- to dry-weight ratio was examined, and concentrations of protein, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) were determined using the bicinchoninic acid method or ELISA. Lung injury was assayed via lung histological examination. PI3K and p-Akt expression levels in the lung tissue were determined by Western blotting. Propofol pretreatment prolonged survival, decreased the concentrations of protein, TNF-α, and IL-6 in BALF, attenuated ALI, and increased PI3K and p-Akt expression in the lung tissue of LPS-challenged rats, whereas treatment with wortmannin, a PI3K/Akt pathway specific inhibitor, blunted this effect. Our study indicates that propofol pretreatment attenuated LPS-induced ALI, partly by activation of the PI3K/Akt pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiotensin II (ANG II), the main effector of the renin-angiotensin system, is implicated in endothelial permeability, recruitment and activation of the immune cells, and also vascular remodeling through induction of inflammatory genes. Matrix metalloproteinases (MMPs) are considered to be important inflammatory factors. Elucidation of ANG II signaling pathways and of possible cross-talks between their components is essential for the development of efficient inhibitory medications. The current study investigates the inflammatory signaling pathways activated by ANG II in cultures of human monocytic U-937 cells, and the effects of specific pharmacological inhibitors of signaling intermediates on MMP-9 gene (MMP-9) expression and activity. MMP-9 expression was determined by real-time PCR and supernatants were analyzed for MMP-9 activity by ELISA and zymography methods. A multi-target ELISA kit was employed to evaluate IκB, NF-κB, JNK, p38, and STAT3 activation following treatments. Stimulation with ANG II (100 nM) significantly increased MMP-9 expression and activity, and also activated NF-κB, JNK, and p38 by 3.8-, 2.8- and 2.2-fold, respectively (P < 0.01). ANG II-induced MMP-9 expression was significantly reduced by 75 and 67%, respectively, by co-incubation of the cells with a selective inhibitor of protein kinase C (GF109203X, 5 µM) or of rho kinase (Y-27632, 15 µM), but not with inhibitors of phosphoinositide 3-kinase (wortmannin, 200 nM), tyrosine kinases (genistein, 100 µM) or of reactive oxygen species (α-tocopherol, 100 µM). Thus, protein kinase C and Rho kinase are important components of the inflammatory signaling pathways activated by ANG II to increase MMP-9 expression in monocytic cells. Both signaling molecules may constitute potential targets for effective management of inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated whether Ca2+/calmodulin-dependent kinase II (CaMKII) and calcineurin (CaN) are involved in myocardial hypertrophy induced by tumor necrosis factor α (TNF-α). The cardiomyocytes of neonatal Wistar rats (1-2 days old) were cultured and stimulated by TNF-α (100 μg/L), and Ca2+ signal transduction was blocked by several antagonists, including BAPTA (4 µM), KN-93 (0.2 µM) and cyclosporin A (CsA, 0.2 µM). Protein content, protein synthesis, cardiomyocyte volumes, [Ca2+]i transients, CaMKIIδB and CaN were evaluated by the Lowry method, [³H]-leucine incorporation, a computerized image analysis system, a Till imaging system, and Western blot analysis, respectively. TNF-α induced a significant increase in protein content in a dose-dependent manner from 10 µg/L (53.56 µg protein/well) to 100 μg/L (72.18 µg protein/well), and in a time-dependent manner from 12 h (37.42 µg protein/well) to 72 h (42.81 µg protein/well). TNF-α (100 μg/L) significantly increased the amplitude of spontaneous [Ca2+]i transients, the total protein content, cell size, and [³H]-leucine incorporation in cultured cardiomyocytes, which was abolished by 4 µM BAPTA, an intracellular Ca2+ chelator. The increases in protein content, cell size and [³H]-leucine incorporation were abolished by 0.2 µM KN-93 or 0.2 µM CsA. TNF-α increased the expression of CaMKIIδB by 35.21% and that of CaN by 22.22% compared to control. These effects were abolished by 4 µM BAPTA, which itself had no effect. These results suggest that TNF-α induces increases in [Ca2+]i, CaMKIIδB and CaN and promotes cardiac hypertrophy. Therefore, we hypothesize that the Ca2+/CaMKII- and CaN-dependent signaling pathways are involved in myocardial hypertrophy induced by TNF-α.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Induction of apoptosis by tumor necrosis factor (TNF) is modulated by changes in the expression and activity of several cell cycle regulatory proteins. We examined the effects of TNF (1-100 ng/ml) and butyrolactone I (100 µM), a specific inhibitor of cyclin-dependent kinases (CDK) with high selectivity for CDK-1 and CDK-2, on three different cancer cell lines: WEHI, L929 and HeLa S3. Both compounds blocked cell growth, but only TNF induced the common events of apoptosis, i.e., chromatin condensation and ladder pattern of DNA fragmentation in these cell lines. The TNF-induced apoptosis events were increased in the presence of butyrolactone. In vitro phosphorylation assays for exogenous histone H1 and endogenous retinoblastoma protein (pRb) in the total cell lysates showed that treatment with both TNF and butyrolactone inhibited the histone H1 kinase (WEHI, L929 and HeLa) and pRb kinase (WEHI) activities of CDKs, as compared with the controls. The role of proteases in the TNF and butyrolactone-induced apoptosis was evaluated by comparing the number and expression of polypeptides in the cell lysates by gel electrophoresis. TNF and butyrolactone treatment caused the disappearance of several cellular protein bands in the region between 40-200 kDa, and the 110- 90- and 50-kDa proteins were identified as the major substrates, whose degradation was remarkably increased by the treatments. Interestingly, the loss of several cellular protein bands was associated with the marked accumulation of two proteins apparently of 60 and 70 kDa, which may be cleavage products of one or more proteins. These findings link the decrease of cyclin-dependent kinase activities to the increase of protease activities within the growth arrest and apoptosis pathways induced by TNF.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

8-Methoxy psoralen (8-MOP) exerts a short-term (24 h) mitogenic action, and a long-term (48-72 h) anti-proliferative and melanogenic action on two human melanoma cell lines, SK-Mel 28 and C32TG. An increase of intracellular calcium concentration was observed by spectrofluorometry immediately after the addition of 0.1 mM 8-MOP to both cell lines, previously incubated with calcium probe fluo-3 AM (5 µM). The intracellular Ca2+ chelator BAPTA/AM (1 µM) blocked both early (mitogenic) and late (anti-proliferative and melanogenic) 8-MOP effects on both cell lines, thus revealing the importance of the calcium signal in both short- and long-term 8-MOP-evoked responses. Long-term biological assays with 5 and 10 mM tetraethylammonium chloride (TEA, an inhibitor of Ca2+-dependent K+ channels) did not affect the responses to psoralen; however, in 24-h assays 10 mM TEA blocked the proliferative peak, indicating a modulation of Ca2+-dependent K+ channels by 8-MOP. No alteration of cAMP basal levels or forskolin-stimulated cAMP levels was promoted by 8-MOP in SK-Mel 28 cells, as determined by radioimmunoassay. However, in C32TG cells forskolin-stimulated cAMP levels were further increased in the presence of 8-MOP. In addition, assays with 1 µM protein kinase C and calcium/calmodulin-dependent kinase inhibitors, Ro 31-8220 and KN-93, respectively, excluded the participation of these kinases in the responses evoked by 8-MOP. Western blot with antibodies anti-phosphotyrosine indicated a 92% increase of the phosphorylated state of a 43-kDa band, suggesting that the phosphorylation of this protein is a component of the cascade that leads to the increase of tyrosinase activity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The tissue inhibitor of metalloproteinases (TIMP)-1 is a multifunctional protein which is not only an inhibitor of matrix metalloproteinases (MMPs) but also to have a possible "cytokine-like" action. Here, we first compared mRNA expression of TIMP-1 and MMP-9 in BEL-7402 (a hepatocellular carcinoma cell line), L-02 (a normal liver cell line) and QSG-7701 (a cell line derived from peripheral tissue of liver carcinoma) using real-time quantitative RT-PCR. By evaluating the variation of the MMP-9/TIMP-1 ratio as an index of reciprocal changes of the expression of the two genes, we observed that the MMP-9/TIMP-1 ratio was about 13- and 5-fold higher in BEL-7402 than in L-02 and QSG-7701, respectively. Significantly, overexpression of TIMP-1 decreased the MMP-9/TIMP-1 ratio in BEL-7402 and then inhibited the cell growth to 60% and reduced the migration to about 30%. Meanwhile, our data showed that interleukin-6 (IL-6) (100 ng/mL) could also inhibited the cell growth of BEL-7402. Further studies indicated that TIMP-1 mediated the inhibitory effect of IL-6 on BEL-7402 cell proliferation in a STAT3-dependent manner, which could further accelerate the expression of the cyclin-dependent kinase inhibitor p21. A dominant negative STAT3 mutant totally abolished IL-6-induced TIMP-1 expression and its biological functions. The present results demonstrate that TIMP-1 may be one of the mediators that regulate the inhibitory effect of IL-6 on BEL-7402 proliferation in which STAT3 signal transduction and p21 up-regulation also play important roles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ca2+ pumps are important players in smooth muscle contraction. Nevertheless, little information is available about these pumps in the vas deferens. We have determined which subtype of sarco(endo)plasmic reticulum Ca2+-ATPase isoform (SERCA) is expressed in rat vas deferens (RVD) and its modulation by calmodulin (CaM)-dependent mechanisms. The thapsigargin-sensitive Ca2+-ATPase from a membrane fraction containing the highest SERCA levels in the RVD homogenate has the same molecular mass (∼115 kDa) as that of SERCA2 from the rat cerebellum. It has a very high affinity for Ca2+ (Ca0.5 = 780 nM) and a low sensitivity to vanadate (IC50 = 41 µM). These facts indicate that SERCA2 is present in the RVD. Immunoblotting for CaM and Ca2+/calmodulin-dependent protein kinase II (CaMKII) showed the expression of these two regulatory proteins. Ca2+ and CaM increased serine-phosphorylated residues of the 115-kDa protein, indicating the involvement of CaMKII in the regulatory phosphorylation of SERCA2. Phosphorylation is accompanied by an 8-fold increase of thapsigargin-sensitive Ca2+ accumulation in the lumen of vesicles derived from these membranes. These data establish that SERCA2 in the RVD is modulated by Ca2+ and CaM, possibly via CaMKII, in a process that results in stimulation of Ca2+ pumping activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we provide evidence that both the mRNA and protein levels of the cyclin-dependent kinase (CDK) inhibitor p21WAF1/CDK-interacting protein 1 (Cip1) increase upon infection of A431 cells with Vaccinia virus (VACV). In addition, the VACV growth factor (VGF) seems to be required for the gene expression because infection carried out with the mutant virus VACV-VGF- revealed that this strain was unable to stimulate its transcription. Our findings are also consistent with the notion that the VGF-mediated change in p21WAF1/Cip1 expression is dependent on tyrosine kinase pathway(s) and is partially dependent on mitogen-activated protein kinase/extracellular-signal regulated kinase 1/2. We believe that these pathways are biologically significant because VACV replication and dissemination was drastically affected when the infection was carried out in the presence of the relevant pharmacological inhibitors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interfering with cellular signal transduction pathways is a common strategy used by many viruses to create a propitious intracellular environment for an efficient replication. Our group has been studying cellular signalling pathways activated by the orthopoxviruses Vaccinia (VACV) and Cowpox (CPXV) and their significance to viral replication. In the present study our aim was to investigate whether the GTPase Rac1 was an upstream signal that led to the activation of MEK/ERK1/2, JNK1/2 or Akt pathways upon VACV or CPXV' infections. Therefore, we generated stable murine fibroblasts exhibiting negative dominance to Rac1-N17 to evaluate viral growth and the phosphorylation status of ERK1/2, JNK1/2 and Akt. Our results demonstrated that VACV replication, but not CPXV, was affected in dominant-negative (DN) Rac1-N17 cell lines in which viral yield was reduced in about 10-fold. Viral late gene expression, but not early, was also reduced. Furthermore, our data showed that Akt phosphorylation was diminished upon VACV infection in DN Rac1-N17 cells, suggesting that Rac1 participates in the phosphoinositide-3 kinase pathway leading to the activation of Akt. In conclusion, our results indicate that while Rac1 indeed plays a role in VACV biology, perhaps another GTPase may be involved in CPXV replication.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Saccharomyces cerevisiae neutral trehalase (encoded by NTH1) is regulated by cAMP-dependent protein kinase (PKA) and by an endogenous modulator protein. A yeast strain with knockouts of CMK1 and CMK2 genes (cmk1cmk2) and its isogenic control (CMK1CMK2) were used to investigate the role of CaM kinase II in the in vitro activation of neutral trehalase during growth on glucose. In the exponential growth phase, cmk1cmk2 cells exhibited basal trehalase activity and an activation ratio by PKA very similar to that found in CMK1CMK2 cells. At diauxie, even though both cells presented comparable basal trehalase activities, cmk1cmk2 cells showed reduced activation by PKA and lower total trehalase activity when compared to CMK1CMK2 cells. To determine if CaM kinase II regulates NTH1 expression or is involved in post-translational modulation of neutral trehalase activity, NTH1 promoter activity was evaluated using an NTH1-lacZ reporter gene. Similar ß-galactosidase activities were found for CMK1CMK2 and cmk1cmk2 cells, ruling out the role of CaM kinase II in NTH1 expression. Thus, CaM kinase II should act in concert with PKA on the activation of the cryptic form of neutral trehalase. A model for trehalase regulation by CaM kinase II is proposed whereby the target protein for Ca2+/CaM-dependent kinase II phosphorylation is not the neutral trehalase itself. The possible identity of this target protein with the recently identified trehalase-associated protein YLR270Wp is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neuroblastoma, the most common extracranial tumor in childhood, has a wide spectrum of clinical and biological features. The loss of heterozygosity within the 9p21 region has been reported as a prognostic factor. Two tumor suppressor genes located in this region, the CDKN2B/p15 and CDKN2A/p16 (cyclin-dependent kinase inhibitors 2B and 2A, respectively) genes, play a critical role in cell cycle progression and are considered to be targets for tumor inactivation. We analyzed CDKN2B/p15 and CDKN2A/p16 gene alterations in 11 patients, who ranged in age from 4 months to 13 years (male/female ratio was 1.2:1). The most frequent stage of the tumor was stage IV (50%), followed by stages II and III (20%) and stage I (10%). The samples were submitted to the multiplex PCR technique for homozygous deletion analysis and to single-strand conformation polymorphism and nucleotide sequencing for mutation analysis. All exons of both genes were analyzed, but no deletion was detected. One sample exhibited shift mobility specific for exon 2 in the CDKN2B/p15 gene, not confirmed by DNA sequencing. Homozygous deletions and mutations are not involved in the inactivation mechanism of the CDKN2B/p15 and CDKN2A/p16 genes in neuroblastoma; however, these two abnormalities do not exclude other inactivation pathways. Recent evidence has shown that the expression of these genes is altered in this disease. Therefore, other mechanisms of inactivation, such as methylation of promoter region and unproperly function of proteins, may be considered in order to estimate the real contribution of these genes to neuroblastoma genesis or disease progression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Endothelins (ETs) and sarafotoxins (SRTXs) belong to a family of vasoconstrictor peptides, which regulate pigment migration and/or production in vertebrate pigment cells. The teleost Carassius auratus erythrophoroma cell line, GEM-81, and Mus musculus B16 melanocytes express rhodopsin, as well as the ET receptors, ETB and ETA, respectively. Both cell lines are photoresponsive, and respond to light with a decreased proliferation rate. For B16, the doubling time of cells kept in 14-h light (14L):10-h darkness (10D) was higher compared to 10L:14D, or to DD. The doubling time of cells kept in 10L:14D was also higher compared to DD. Using real-time PCR, we demonstrated that SRTX S6c (12-h treatment, 100 pM and 1 nM; 24-h treatment, 1 nM) and ET-1 (12-h treatment, 10 and 100 pM; 24- and 48-h treatments, 100 pM) increased rhodopsin mRNA levels in GEM-81 and B16 cells, respectively. This modulation involves protein kinase C (PKC) and the mitogen-activated protein kinase cascade in GEM-81 cells, and phospholipase C, Ca2+, calmodulin, a Ca2+/calmodulin-dependent kinase, and PKC in B16 cells. Cells were kept under constant darkness throughout the gene expression experiments. These results show that rhodopsin mRNA levels can be modulated by SRTXs/ETs in vertebrate pigment cells. It is possible that SRTX S6c binding to the ETB receptors in GEM-81 cells, and ET-1 binding to ETA receptors in B16 melanocytes, although activating diverse intracellular signaling mechanisms, mobilize transcription factors such as c-Fos, c-Jun, c-Myc, and neural retina leucine zipper protein. These activated transcription factors may be involved in the positive regulation of rhodopsin mRNA levels in these cell lines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MP [4-(3′,3′-dimethylallyloxy)-5-methyl-6-methoxyphthalide] was obtained from liquid culture of Pestalotiopsis photiniaeisolated from the Chinese Podocarpaceae plant Podocarpus macrophyllus. MP significantly inhibited the proliferation of HeLa tumor cell lines. After treatment with MP, characteristic apoptotic features such as DNA fragmentation and chromatin condensation were observed in DAPI-stained HeLa cells. Flow cytometry showed that MP induced G1 cell cycle arrest and apoptosis in a dose-dependent manner. Western blotting and real-time reverse transcription-polymerase chain reaction were used to investigate protein and mRNA expression. MP caused significant cell cycle arrest by upregulating the cyclin-dependent kinase inhibitor p27KIP1 protein and p21CIP1 mRNA levels in HeLa cells. The expression of p73 protein was increased after treatment with various MP concentrations. mRNA expression of the cell cycle-related genes, p21CIP1, p16INK4a and Gadd45α, was significantly upregulated and mRNA levels demonstrated significantly increased translation ofp73, JunB, FKHR, andBim. The results indicate that MP may be a potential treatment for cervical cancer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study focuses on the neuroprotective effect of glycyrrhizic acid (GA, a major compound separated from Glycyrrhiza Radix, which is a crude Chinese traditional drug) against glutamate-induced cytotoxicity in differentiated PC12 (DPC12) cells. The results showed that GA treatment improved cell viability and ameliorated abnormal glutamate-induced alterations in mitochondria in DPC12 cells. GA reversed glutamate-suppressed B-cell lymphoma 2 levels, inhibited glutamate-enhanced expressions of Bax and cleaved caspase 3, and reduced cytochrome C (Cyto C) release. Exposure to glutamate strongly inhibited phosphorylation of AKT (protein kinase B) and extracellular signal-regulated kinases (ERKs); however, GA pretreatment enhanced activation of ERKs but not AKT. The presence of PD98059 (a mitogen-activated protein/extracellular signal-regulated kinase kinase [MEK] inhibitor) but not LY294002 (a phosphoinositide 3-kinase [PI3K] inhibitor) diminished the potency of GA for improving viability of glutamate-exposed DPC12 cells. These results indicated that ERKs and mitochondria-related pathways are essential for the neuroprotective effect of GA against glutamate-induced toxicity in DPC12 cells. The present study provides experimental evidence supporting GA as a potential therapeutic agent for use in the treatment of neurodegenerative diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

p15INK4B, a cyclin-dependent kinase inhibitor, has been recognized as a tumor suppressor. Loss of or methylation of the p15INK4B gene in chronic myeloid leukemia (CML) cells enhances myeloid progenitor formation from common myeloid progenitors. Therefore, we examined the effects of overexpressed p15INK4B on proliferation and apoptosis of CML cells. Overexpression of p15INK4B inhibited the growth of K562 cells by downregulation of cyclin-dependent kinase 4 (CDK4) and cyclin D1 expression. Overexpression of p15INK4B also induced apoptosis of K562 cells by upregulating Bax expression and downregulating Bcl-2 expression. Overexpression of p15INK4B together with STI571 (imatinib) or BCR-ABL1 small interfering RNA (siRNA) also enhanced growth inhibition and apoptosis induction of K562 cells. The enhanced effect was also mediated by reduction of cyclin D1 and CDK4 and regulation of Bax and Bcl-2. In conclusion, our study may provide new insights into the role of p15INK4B in CML and a potential therapeutic target for overcoming tyrosine kinase inhibitor resistance in CML.