51 resultados para Paraventricular Hypothalamic Nucleus
em Scielo Saúde Pública - SP
Resumo:
The medial hypothalamus is part of a neurobiological substrate controlling defensive behavior. It has been shown that a hypothalamic nucleus, the dorsomedial hypothalamus (DMH), is involved in the regulation of escape, a defensive behavior related to panic attacks. The role played by the DMH in the organization of conditioned fear responses, however, is less clear. In the present study, we investigated the effects of reversible inactivation of the DMH with the GABA A agonist muscimol on inhibitory avoidance acquisition and escape expression by male Wistar rats (approximately 280 g in weight) tested in the elevated T-maze (ETM). In the ETM, inhibitory avoidance, a conditioned defensive response, has been associated with generalized anxiety disorder. Results showed that intra-DMH administration of the GABA A receptor agonist muscimol inhibited escape performance, suggesting an antipanic-like effect (P < 0.05), without changing inhibitory avoidance acquisition. Although a higher dose of muscimol (1.0 nmol/0.2 µL; N = 7) also altered locomotor activity in an open field when compared to control animals (0.2 µL saline; N = 13) (P < 0.05), the lower dose (0.5 nmol/0.2 µL; N = 12) of muscimol did not cause any motor impairment. These data corroborate previous evidence suggesting that the DMH is specifically involved in the modulation of escape. Dysfunction of this regulatory mechanism may be relevant in the genesis/maintenance of panic disorder.
Resumo:
OBJECTIVE: We determined the effects of losartan and PD 123319 (antagonists of the AT1 and AT2 angiotensin receptors, respectively), and [Sar¹, Ala8] ANG II (a relatively peptide antagonist of angiotensin receptors) injected into the paraventricular nucleus (PVN) on water and 3% NaCl intake, and the diuretic, natriuretic, and pressor effects induced by administration of angiotensin II (ANG II) into the medial septal area (MSA) of conscious rats. METHODS: Holtzman rats were used . Animals were anesthetized with tribromoethanol (20 mg) per 100 grams of body weight, ip. A stainless steel guide cannula was implanted into the MSA and PVN. All drugs were injected in 0.5-mul volumes for 10-15 seconds. Seven days after brain surgery, water and 3% NaCl intake, urine and sodium excretion, and arterial blood pressure were measured. RESULTS: Losartan (40 nmol) and [Sar¹, Ala8] ANG II (40 nmol) completely eliminated whereas PD 123319 (40 nmol) partially blocked the increase in water and sodium intake and the increase in arterial blood pressure induced by ANG II (10 nmol) injected into the MSA. The PVN administration of PD 123319 and [Sar¹, Ala8] ANG II blocked whereas losartan attenuated the diuresis and natriuresis induced by MSA administration of ANG II. CONCLUSION: MSA involvement with PVN on water and sodium homeostasis and arterial pressure modulation utilizing ANGII receptors is suggested.
Resumo:
The effects of dorsomedial hypothalamic (DMH) nucleus lesion on body weight, plasma glucose levels, and the gastric emptying of a liquid meal were investigated in male Wistar rats (170-250 g). DMH lesions were produced stereotaxically by delivering a 2.0-mA current for 20 s through nichrome electrodes (0.3-mm tip exposure). In a second set of experiments, the DMH and the ventromedial hypothalamic (VMH) nucleus were lesioned with a 1.0-mA current for 10 s (0.1-mm tip exposure). The medial hypothalamus (MH) was also lesioned separately using a nichrome electrode (0.3-mm tip exposure) with a 2.0-mA current for 20 s. Gastric emptying was measured following the orogastric infusion of a liquid test meal consisting of physiological saline (0.9% NaCl, w/v) plus phenol red dye (6 mg/dl) as a marker. Plasma glucose levels were determined after an 18-h fast before the lesion and on the 7th and 15th postoperative day. Body weight was determined before lesioning and before sacrificing the rats. The DMH-lesioned rats showed a significantly faster (P<0.05) gastric emptying (24.7% gastric retention, N = 11) than control (33.0% gastric retention, N = 8) and sham-lesioned (33.5% gastric retention, N = 12) rats, with a transient hypoglycemia on the 7th postoperative day which returned to normal by the 15th postoperative day. In all cases, weight gain was slower among lesioned rats. Additional experiments using a smaller current to induce lesions confirmed that DMH-lesioned rats had a faster gastric emptying (25.1% gastric retention, N = 7) than control (33.4% gastric retention, N = 17) and VMH-lesioned (34.6% gastric retention, N = 7) rats. MH lesions resulted in an even slower gastric emptying (43.7% gastric retention, N = 7) than in the latter two groups. We conclude that although DMH lesions reduce weight gain, they do not produce consistent changes in plasma glucose levels. These lesions also promote faster gastric emptying of an inert liquid meal, thus suggesting a role for the DMH in the regulation of gastric motility
Resumo:
The release of adrenocorticotropin (ACTH) from the corticotrophs is controlled principally by vasopressin and corticotropin-releasing hormone (CRH). Oxytocin may augment the release of ACTH under certain conditions, whereas atrial natriuretic peptide acts as a corticotropin release-inhibiting factor to inhibit ACTH release by direct action on the pituitary. Glucocorticoids act on their receptors within the hypothalamus and anterior pituitary gland to suppress the release of vasopressin and CRH and the release of ACTH in response to these neuropeptides. CRH neurons in the paraventricular nucleus also project to the cerebral cortex and subcortical regions and to the locus ceruleus (LC) in the brain stem. Cortical influences via the limbic system and possibly the LC augment CRH release during emotional stress, whereas peripheral input by pain and other sensory impulses to the LC causes stimulation of the noradrenergic neurons located there that project their axons to the CRH neurons stimulating them by alpha-adrenergic receptors. A muscarinic cholinergic receptor is interposed between the alpha-receptors and nitric oxidergic interneurons which release nitric oxide that activates CRH release by activation of cyclic guanosine monophosphate, cyclooxygenase, lipoxygenase and epoxygenase. Vasopressin release during stress may be similarly mediated. Vasopressin augments the release of CRH from the hypothalamus and also augments the action of CRH on the pituitary. CRH exerts a positive ultrashort loop feedback to stimulate its own release during stress, possibly by stimulating the LC noradrenergic neurons whose axons project to the paraventricular nucleus to augment the release of CRH.
Resumo:
We determined the effects of losartan (40 nmol) and PD 123319 (40 nmol) (both non-peptides and selective antagonists of the AT1 and AT2 angiotensin receptors, respectively), and [Sar¹, Ala8] angiotensin II (ANG II) (40 nmol) (a non-selective peptide antagonist of angiotensin receptors) injected into the paraventricular nucleus (PVN) on the water and salt appetite, diuresis and natriuresis and mean arterial pressure (MAP) induced by administration of 10 nmol of ANG II into the medial septal area (MSA) of male Holtzman rats weighing 250-300 g. The volume of drug solution injected was 0.5 µl over a period of 10-15 s. The responses were measured over a period of 120 min. ANG II alone injected into the MSA induced an increase in all the above parameters (8.1 ± 1.2, 1.8 ± 0.3, and 17.1 ± 1.0 ml, 217 ± 25 µEq/120 min, and 24 ± 4 mmHg, respectively, N = 10-12) compared with vehicle-treated rats (1.4 ± 0.2, 0.6 ± 0.1, and 9.3 ± 0.5 ml, 47 ± 5 µEq/120 min, and 4.1 ± 0.8 mmHg, respectively, N = 10-14). Pretreatment with losartan and [Sar¹, Ala8] ANG II completely abolished the water and sodium intake, and the pressor increase (0.5 ± 0.2, 1.1 ± 0.2, 0.5 ± 0.2, and 0.8 ± 0.2 ml, and 1.2 ± 3.9, 31 ± 4.6 mmHg, respectively, N = 9-12), whereas losartan blunted the urinary and sodium excretion induced by ANG II (13.9 ± 1.0 ml and 187 ± 10 µEq/120 min, respectively, N = 9). Pretreatment with PD 123319 and [Sar¹, Ala8] ANG II blocked the urinary and sodium excretion (10.7 ± 0.8, 9.8 ± 0.7 ml, and 67 ± 13 and 57 ± 17 µEq/120 min, respectively, N = 9), whereas pretreatment with PD 123319 partially blocked the water and sodium intake, and the MAP induced by ANG II administration (2.3 ± 0.3, 1.1 ± 0.1 ml, and 12 ± 3 mmHg, respectively, N = 9-10). These results suggest the angiotensinergic effect of the MSA on the AT1 and AT2 receptors of the PVN in terms of water and sodium homeostasis and MAP modulation.
Resumo:
Estradiol participates in the control of energy homeostasis, as demonstrated by an increase in food intake and in body weight gain after ovariectomy in rats. In the present study, female Wistar rats (200-230 g, N = 5-15 per group), with free access to chow, were individually housed in metabolic cages. We investigated food intake, body weight, plasma leptin levels, measured by specific radioimmunoassay, and the hypothalamic mRNA expression of orexigenic and anorexigenic neuropeptides, determined by real-time PCR, in ovariectomized rats with (OVX+E) and without (OVX) estradiol cypionate treatment (10 µg/kg body weight, sc, for 8 days). Hormonal and mRNA expression were determined at pre-feeding and 4 h after food intake. OVX+E rats showed lower food intake, less body weight gain and lower plasma leptin levels. In the OVX+E group, we also observed a reduction of neuropeptide Y (NPY), agouti-related protein (AgRP) and cocaine- and amphetamine-regulated transcript (CART) mRNA expression in the arcuate nucleus and a decrease in orexin A in the lateral hypothalamic area (LHA). There was an increase in leptin receptor (LepRb), melanocortin-4 receptor (MC4-R), CART, and mainly corticotropin-releasing hormone (CRH) mRNA in the paraventricular nucleus and LepRb and CART mRNA in the LHA. These data show that hypophagia induced by estradiol treatment is associated with reduced hypothalamic expression of orexigenic peptides such as NPY, AgRP and orexin A, and increased expression of the anorexigenic mediators MC4-R, LepRb and CRH. In conclusion, estradiol decreases food intake, and this effect seems to be mediated by peripheral factors such as leptin and the differential mRNA expression of neuropeptides in the hypothalamus.
Resumo:
Nitric oxide (NO), a free radical gas produced endogenously from the amino acid L-arginine by NO synthase (NOS), has important functions in modulating vasopressin and oxytocin secretion from the hypothalamo-neurohypophyseal system. NO production is stimulated during increased functional activity of magnocellular neurons, in parallel with plastic changes of the supraoptic nucleus (SON) and paraventricular nucleus. Electrophysiological data recorded from the SON of hypothalamic slices indicate that NO inhibits firing of phasic and non-phasic neurons, while L-NAME, an NOS inhibitor, increases their activity. Results from measurement of neurohypophyseal hormones are more variable. Overall, however, it appears that NO, tonically produced in the forebrain, inhibits vasopressin and oxytocin secretion during normovolemic, isosmotic conditions. During osmotic stimulation, dehydration, hypovolemia and hemorrhage, as well as high plasma levels of angiotensin II, NO inhibition of vasopressin neurons is removed, while that of oxytocin neurons is enhanced. This produces a preferential release of vasopressin over oxytocin important for correction of fluid imbalance. During late pregnancy and throughout lactation, fluid homeostasis is altered and expression of NOS in the SON is down- and up-regulated, respectively, in parallel with plastic changes of the magnocellular system. NO inhibition of magnocellular neurons involves GABA and prostaglandin synthesis and the signal-transduction mechanism is independent of the cGMP-pathway. Plasma hormone levels are unaffected by icv 1H-[1, 2, 4]oxadiazolo-[4,3-a]quinoxalin-1-one (a soluble guanylyl cyclase inhibitor) or 8-Br-cGMP administered to conscious rats. Moreover, cGMP does not increase in homogenates of the neural lobe and in microdialysates of the SON when NO synthesis is enhanced during osmotic stimulation. Among alternative signal-transduction pathways, nitrosylation of target proteins affecting activity of ion channels is considered.
Resumo:
Cyhalothrin, a pyrethroid insecticide, induces stress-like symptoms, increases c-fos immunoreactivity in the paraventricular nucleus of the hypothalamus, and decreases innate immune responses in laboratory animals. Macrophages are key elements in cellular immune responses and operate at the tumor-host interface. This study investigated the relationship among cyhalothrin effects on Ehrlich tumor growth, serum corticosterone levels and peritoneal macrophage activity in mice. Three experiments were done with 10 experimental (single gavage administration of 3.0 mg/kg cyhalothrin daily for 7 days) and 10 control (single gavage administration of 1.0 mL/kg vehicle of cyhalothrin preparation daily for 7 days) isogenic BALB/c mice in each experiment. Cyhalothrin i) increased Ehrlich ascitic tumor growth after ip administration of 5.0 x 106 tumor cells, i.e., ascitic fluid volume (control = 1.97 ± 0.39 mL and experimental = 2.71 ± 0.92 mL; P < 0.05), concentration of tumor cells/mL in the ascitic fluid (control = 111.95 ± 16.73 x 106 and experimental = 144.60 ± 33.18 x 106; P < 0.05), and total number of tumor cells in the ascitic fluid (control = 226.91 ± 43.22 x 106 and experimental = 349.40 ± 106.38 x 106; P < 0.05); ii) increased serum corticosterone levels (control = 200.0 ± 48.3 ng/mL and experimental = 420.0 ± 75.5 ng/mL; P < 0.05), and iii) decreased the intensity of macrophage phagocytosis (control = 132.3 ± 19.7 and experimental = 116.2 ± 4.6; P < 0.05) and oxidative burst (control = 173.7 ± 40.8 and experimental= 99.58 ± 41.7; P < 0.05) in vitro in the presence of Staphylococcus aureus. These data provide evidence that cyhalothrin simultaneously alters host resistance to Ehrlich tumor growth, hypothalamic-pituitary-adrenocortical (HPA) axis function, and peritoneal macrophage activity. The results are discussed in terms of data suggesting a link between stress, HPA axis activation and resistance to tumor growth.
Resumo:
We evaluated the expression of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), ionized calcium binding adaptor protein-1 (Iba-1), and ferritin in rats after single or repeated lipopolysaccharide (LPS) treatment, which is known to induce endotoxin tolerance and glial activation. Male Wistar rats (200-250 g) received ip injections of LPS (100 µg/kg) or saline for 6 days: 6 saline (N = 5), 5 saline + 1 LPS (N = 6) and 6 LPS (N = 6). After the sixth injection, the rats were perfused and the brains were collected for immunohistochemistry. After a single LPS dose, the number of GFAP-positive cells increased in the hypothalamic arcuate nucleus (ARC; 1 LPS: 35.6 ± 1.4 vs control: 23.1 ± 2.5) and hippocampus (1 LPS: 165.0 ± 3.0 vs control: 137.5 ± 2.5), and interestingly, 6 LPS injections further increased GFAP expression in these regions (ARC = 52.5 ± 4.3; hippocampus = 182.2 ± 4.1). We found a higher GS expression only in the hippocampus of the 6 LPS injections group (56.6 ± 0.8 vs 46.7 ± 1.9). Ferritin-positive cells increased similarly in the hippocampus of rats treated with a single (49.2 ± 1.7 vs 28.1 ± 1.9) or repeated (47.6 ± 1.1 vs 28.1 ± 1.9) LPS dose. Single LPS enhanced Iba-1 in the paraventricular nucleus (PVN: 92.8 ± 4.1 vs 65.2 ± 2.2) and hippocampus (99.4 ± 4.4 vs 73.8 ± 2.1), but had no effect in the retrochiasmatic nucleus (RCA) and ARC. Interestingly, 6 LPS increased the Iba-1 expression in these hypothalamic and hippocampal regions (RCA: 57.8 ± 4.6 vs 36.6 ± 2.2; ARC: 62.4 ± 6.0 vs 37.0 ± 2.2; PVN: 100.7 ± 4.4 vs 65.2 ± 2.2; hippocampus: 123.0 ± 3.8 vs 73.8 ± 2.1). The results suggest that repeated LPS treatment stimulates the expression of glial activation markers, protecting neuronal activity during prolonged inflammatory challenges.
Resumo:
Introduction Antidepressant induced excessive yawning has been described as a possible side effect of pharmacotherapy. A syndrome of indifference has also been described as another possible side effect. The frequency of those phenomena and their physiopathology are unknown. They are both considered benign and reversible after antidepressant discontinuation but severe cases with complications as temporomandibular lesions, have been described. Methods We report two unprecedented cases in which excessive yawning and indifference occurred simultaneously as side effects of antidepressant therapy, discussing possible physiopathological mechanisms for this co-occurrence. Case 1: A male patient presented excessive yawning (approximately 80/day) and apathy after venlafaxine XR treatment. Symptoms reduced after a switch to escitalopram, with a reduction to 50 yawns/day. Case 2: A female patient presented excessive yawning (approximately 25/day) and inability to react to environmental stressors with desvenlafaxine. Conclusion Induction of indifference and excessive yawning may be modulated by serotonergic and noradrenergic mechanisms. One proposal to unify these side effects would be enhancement of serotonin in midbrain, especially paraventricular and raphe nucleus.
Resumo:
Background: In pathological situations, such as acute myocardial infarction, disorders of motility of the proximal gut can trigger symptoms like nausea and vomiting. Acute myocardial infarction delays gastric emptying (GE) of liquid in rats. Objective: Investigate the involvement of the vagus nerve, α 1-adrenoceptors, central nervous system GABAB receptors and also participation of paraventricular nucleus (PVN) of the hypothalamus in GE and gastric compliance (GC) in infarcted rats. Methods: Wistar rats, N = 8-15 in each group, were divided as INF group and sham (SH) group and subdivided. The infarction was performed through ligation of the left anterior descending coronary artery. GC was estimated with pressure-volume curves. Vagotomy was performed by sectioning the dorsal and ventral branches. To verify the action of GABAB receptors, baclofen was injected via icv (intracerebroventricular). Intravenous prazosin was used to produce chemical sympathectomy. The lesion in the PVN of the hypothalamus was performed using a 1mA/10s electrical current and GE was determined by measuring the percentage of gastric retention (% GR) of a saline meal. Results: No significant differences were observed regarding GC between groups; vagotomy significantly reduced % GR in INF group; icv treatment with baclofen significantly reduced %GR. GABAB receptors were not conclusively involved in delaying GE; intravenous treatment with prazosin significantly reduced GR% in INF group. PVN lesion abolished the effect of myocardial infarction on GE. Conclusion: Gastric emptying of liquids induced through acute myocardial infarction in rats showed the involvement of the vagus nerve, alpha1- adrenergic receptors and PVN.
Resumo:
Objective: To evaluate the influence of end-stage liver disease and orthotopic liver transplantation in the pituitary function and hormone metabolism before and after liver transplantation.Methods: In a prospective study, serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2) and prolactin (PRL) of 30 male patients with cirrhosis were determined two to four hours before and six months after liver transplantation. The results were compared according to the Model for End-stage Liver Disease (MELD).Results: male patients with liver cirrhosis have hypogonadism. FSH was normal, but inappropriately low due to androgen failure; E2 and PRL, on their turn, were high. After liver transplantation, FSH and LH levels increased (p < 0.05), whereas E2 and PRL normalized (p < 0.05). The MELD score did not influence changes in FSH, PRL and LH, however, the more severe the cirrhosis was, the more significant was the normalization of E2 (p = 0.01).Conclusion: Patients with cirrhosis and male hypogonadism have inappropriately normal levels of FSH and LH, associated with an increase in E2 and LRP. After liver transplantation, FSH and LH increased, while E2 and PRL returned to normal. Changes in E2 levels were most pronounced in patients with MELD > 18. The severity of cirrhosis had no influence on FSH, PRL and LH.
Resumo:
Afferent nerves carrying signals from mechanoreceptors in the aortic arch and carotid sinus terminate predominantly in the nucleus tractus solitarii (NTS). Signal transduction and neurotransmission in the NTS are critical for central cardiovascular reflex control, but little was known about either until the late 1970's. None of the numerous neuroactive chemicals found in the NTS had met strict criteria as a neurotransmitter in the baroreflex arc until data suggested that the excitatory amino acid L-glutamate (GLU) might be released from baroreceptor afferent terminals in the NTS. In anesthetized animals microinjection into the NTS of GLU, which can be demonstrated in terminals in the NTS, produces cardiovascular responses like those seen with activation of the baroreceptor reflex. Similar responses occur in awake animals if the chemoreceptor reflex is eliminated; otherwise, in conscious animals responses mimic those of chemoreceptor reflex activation. GLU is released in the NTS upon selective activation of the baroreceptor, and possibly the chemoreceptor, reflex. Responses to selective agonists as well as baroreflex responses are eliminated by GLU antagonists microinjected into the NTS. Non-NMDA (N-methyl-D-aspartic acid) receptors seem to predominate at primary baroreceptor synapses in the NTS while NMDA receptors may be involved at later synapses. Although inhibition of soluble guanylate cyclase attenuates responses to ionotropic glutamate agonists in the NTS, nitric oxide does not seem to play a role in glutamate transmission in the NTS. GLU may also participate in transmission at cardiovascular neurons beyond the NTS. For example, a role has been suggested for GLU in the ventrolateral medulla and spinal cord. Work continues concerning GLU signal transduction and mechanisms that modulate that transduction both at the NTS and at other cardiovascular nuclei
Resumo:
Neurons which release atrial natriuretic peptide (ANPergic neurons) have their cell bodies in the paraventricular nucleus and in a region extending rostrally and ventrally to the anteroventral third ventricular (AV3V) region with axons which project to the median eminence and neural lobe of the pituitary gland. These neurons act to inhibit water and salt intake by blocking the action of angiotensin II. They also act, after their release into hypophyseal portal vessels, to inhibit stress-induced ACTH release, to augment prolactin release, and to inhibit the release of LHRH and growth hormone-releasing hormone. Stimulation of neurons in the AV3V region causes natriuresis and an increase in circulating ANP, whereas lesions in the AV3V region and caudally in the median eminence or neural lobe decrease resting ANP release and the response to blood volume expansion. The ANP neurons play a crucial role in blood volume expansion-induced release of ANP and natriuresis since this response can be blocked by intraventricular (3V) injection of antisera directed against the peptide. Blood volume expansion activates baroreceptor input via the carotid, aortic and renal baroreceptors, which provides stimulation of noradrenergic neurons in the locus coeruleus and possibly also serotonergic neurons in the raphe nuclei. These project to the hypothalamus to activate cholinergic neurons which then stimulate the ANPergic neurons. The ANP neurons stimulate the oxytocinergic neurons in the paraventricular and supraoptic nuclei to release oxytocin from the neural lobe which circulates to the atria to stimulate the release of ANP. ANP causes a rapid reduction in effective circulating blood volume by releasing cyclic GMP which dilates peripheral vessels and also acts within the heart to slow its rate and atrial force of contraction. The released ANP circulates to the kidney where it acts through cyclic GMP to produce natriuresis and a return to normal blood volume
Resumo:
Nitric oxide synthase (NOS)-containing neurons have been localized in various parts of the CNS. These neurons occur in the hypothalamus, mostly in the paraventricular and supraoptic nuclei and their axons project to the neural lobe of the pituitary gland. We have found that nitric oxide (NO) controls luteinizing hormone-releasing hormone (LHRH) release from the hypothalamus acting as a signal transducer in norepinephrine (NE)-induced LHRH release. LHRH not only releases LH from the pituitary but also induces sexual behavior. On the other hand, it is known that oxytocin also stimulates mating behavior and there is some evidence that oxytocin can increase NE release. Therefore, it occurred to us that oxytocin may also stimulate LHRH release via NE and NO. To test this hypothesis, we incubated medial basal hypothalamic (MBH) explants from adult male rats in vitro. Following a preincubation period of 30 min, MBH fragments were incubated in Krebs-Ringer bicarbonate buffer in the presence of various concentrations of oxytocin. Oxytocin released LHRH at concentrations ranging from 0.1 nM to 1 µM with a maximal stimulatory effect (P<0.001) at 0.1 µM, but with no stimulatory effect at 10 µM. That these effects were mediated by NO was shown by the fact that incubation of the tissues with NG-monomethyl-L-arginine (NMMA), a competitive inhibitor of NOS, blocked the stimulatory effects. Furthermore, the release of LHRH by oxytocin was also blocked by prazocin, an a1-adrenergic receptor antagonist, indicating that NE mediated this effect. Oxytocin at the same concentrations also increased the activity of NOS (P<0.01) as measured by the conversion of [14C]arginine to citrulline, which is produced in equimolar amounts with NO by the action of NOS. The release of LHRH induced by oxytocin was also accompanied by a significant (P<0.02) increase in the release of prostaglandin E2 (PGE2), a mediator of LHRH release that is released by NO. On the other hand, incubation of neural lobes with various concentrations of sodium nitroprusside (NP) (300 or 600 µM), a releaser of NO, revealed that NO acts to suppress (P<0.01) the release of oxytocin. Therefore, our results indicate that oxytocin releases LHRH by stimulating NOS via NE, resulting in an increased release of NO, which increases PGE2 release that in turn induces LHRH release. Furthermore, the released NO can act back on oxytocinergic terminals to suppress the release of oxytocin in an ultrashort-loop negative feedback