350 resultados para Parasite diversity
em Scielo Saúde Pública - SP
Resumo:
Morpho-biological diversity of Trypanosoma cruzi has been known since Chagas' first works in 1909. Several further studies confirmed the morphological differences among the parasite strains, which were isolated from different reservoirs and vectors, as well as from human beings. In the early sixties, antigenic differences were found in the parasite strains from various sources. These differences, coupled to the observation of regional variations of the disease, led to the proposal of the term cruzi complex to designate the taxon T. cruzi. Since then this protozoan has been typed in distinct biodemes, zymodemes and lineages which were consensually grouped into T. cruzi I, T. cruzi II and into non-grouped strains. T. cruzi genotypic characterization, initially carried out by schizodeme analysis and more recently by various other techniques, has shown a great diversity of the parasite strains. In fact, T. cruzi is formed by groups of heterogeneous sub-population, which present specific characteristics, including distinct histotropism. The interaction of the different infecting clones of the cruzi complex and the human host will determine the morbidity of the disease.
Resumo:
Species introductions have altered host and parasite diversity throughout the world. In the case of introduced hosts, population age appears to be a good predictor of parasite richness. Habitat alteration is another variable that may impact host-parasite interactions by affecting the availability of intermediate hosts. The house sparrow (Passer domesticus (Linnaeus, 1758)) is a good model to test these predictions. It was introduced in several parts of the world and can be found across rural-urban gradients. A total of 160 house sparrows from Porto Alegre, state of Rio Grande do Sul, Brazil, were necropsied. Thirty house sparrows (19 %) were parasitized with at least one out of five helminth species (Digenea: Tamerlania inopina Freitas, 1951 and Eumegacetes sp.; Eucestoda: Choanotaenia passerina (Fuhrmann, 1907) Fuhrmann, 1932; Nematoda: Dispharynx nasuta (Rudolphi, 1819) Stiles & Hassall, 1920 and Cardiofilaria pavlovskyi Strom, 1937). Overall, there was no difference in prevalence and intensity of infection of any parasite species, parasite richness and community diversity between adult males and females and adults and juveniles. The number of infected sparrows among seasons, the richness of helminths and the abundance of species were also similar between rural and urban landscapes. Only the prevalence of C. passerina varied seasonally (p=0.0007). A decrease in the number of parasite species from the original range of P. domesticus (13) to its port of entrance in Brazil, the city of Rio de Janeiro (nine), to Porto Alegre (five) is compatible with the hypothesis that host population age is a good predictor of parasite richness.
Resumo:
ABSTRACT Mugil liza Valenciennes, 1836 is an economically important food fish and has been recommended for aquaculture in South America. A total of 278 fishes were collected in the spring and summer of 2009 and 2010. These fish were sorted into sample groups according to their size class. We used Bayesian statistics and 95% credible intervals for each parameter tested were calculated. Fish studied harbored a total of 15 different species of parasites. Diversity of parasite species found on Mugil liza was greatest at the S.R.C. collection site, but evidenced a lower species richness than at A.R. site. The 1st size fishes of both sites evidenced greater parasite diversity than either 2nd or 3rd size fish. Differences observed could be explained by the different use of habitat types at the two sites or differential susceptibility to infection by parasites. The dominance of D. fastigatainfluenced observed results of lower community diversity indexes. New works elucidating different parasite life cycles within juvenile and adults ofM. liza in Argentina, promise to be important for determining the risk of the parasitism by zoonotic metacercariae A. (P.) longa and use of this fish as food and an economic resource, and the possible use of mullet parasites in other promising fields as indicators of biodiversity, and/ or water contamination.
Resumo:
Introduction: The objective of this study was to determine the prevalence and etiological profile of enteropathogens in children from a daycare center. Methods: From October 2010 to February 2011 stool samples from 100 children enrolled in a government daycare center in the municipality of São José do Rio Preto, in the state of São Paulo, were collected and analyzed. Results: A total of 246 bacteria were isolated in 99% of the fecal samples; 129 were in the diarrheal group and 117 in the non-diarrheal group. Seventy-three strains of Escherichia coli were isolated, 19 of Enterobacter, one of Alcaligenes and one of Proteus. There were 14 cases of mixed colonization with Enterobacter and E. coli. Norovirus and Astrovirus were detected in children with clinical signs suggestive of diarrhea. These viruses were detected exclusively among children residing in urban areas. All fecal samples were negative for the presence of the rotavirus species A and C. The presence of Giardia lamblia, Entamoeba coli, Endolimax nana and hookworm was observed. A significant association was found between food consumption outside home and daycare center and the presence of intestinal parasites. Conclusions: For children of this daycare center, intestinal infection due to pathogens does not seem to have contributed to the occurrence of diarrhea or other intestinal symptoms. The observed differences may be due to the wide diversity of geographical, social and economic characteristics and the climate of Brazil, all of which have been reported as critical factors in the modulation of the frequency of different enteropathogens.
Resumo:
In this study, we isolated Trypanosoma cruzi from chronic Chagas heart disease and from megaesophagus patients. The parasite stock hSLU239 (heart disease) yielded clones h1 and h2, whereas stock mSLU142 (megaesophagus) yielded clones m1, m2, m3 and m4. The parasite growth kinetics, doubling time and differentiation in axenic liquid medium showed broad behavioral diversity. It was shown that a particular pattern of behavior for a parental stock could not necessarily be assigned for subsequent clones. This study indicates that i) each Chagas disease patient is infected with several T. cruzi populations; ii) clonal lines derived from patient samples may have different biological characteristics from the original isolate; and that iii) additional behavioral and/or molecular markers are required for further characterization of Trypanosoma cruzi stocks and clones derived from Chagas disease patients in order to identify correlations with pathology.
Resumo:
Parasitological analysis of 237 Menticirrhus ophicephalus, 124 Paralonchurus peruanus, 249 Sciaena deliciosa, 50 Sciaena fasciata and 308 Stellifer minor from Callao (Perú) yielded 37 species of metazoan parasites (14 Monogenea, 11 Copepoda, 4 Nematoda, 3 Acanthocephala, 1 Digenea, 1 Aspidobothrea, 1 Eucestoda, 1 Isopoda and 1 Hirudinea). Only one species, the copepoda Bomolochus peruensis, was common to all five hosts. The majority of the components of the infracommunities analyzed are ectoparasites. The Brillouin index (H) and evenness (J´) were applied to the fully sampled metazoan parasite infracommunities. High values of prevalence and mean abundance of infection are associated to the polyonchoinean monogeneans; the low values of J' reinforce the strong dominance of this group in the studied communities. The paucity of the endoparasite fauna may be a consequence of the unstable environment due to an upwelling system, aperiodically affected by the El Niño Southern Oscillation phenomena.
Resumo:
The merozoite surface protein-1 (MSP-1) locus of Plasmodium falciparum codes for a major asexual blood-stage antigen currently proposed as a major malaria vaccine candidate. The protein, however, shows extensive polymorphism, which may compromise its use in sub-unit vaccines. Here we compare the patterns of allelic diversity at the MSP-1 locus in wild isolates from three epidemiologically distinct malaria-endemic areas: the hypoendemic southwestern Brazilian Amazon (n = 54), the mesoendemic southern Vietnam (n = 238) and the holoendemic northern Tanzania (n = 79). Fragments of the variable blocks 2, 4a, 4b and 6 or 10 of this single-copy gene were amplified by the polymerase chain reaction, and 24 MSP-1 gene types were defined as unique combinations of allelic types in each variable block. Ten different MSP-1 types were identified in Brazil, 23 in Vietnam and 13 in Tanzania. The proportion of genetically mixed infections (isolates with parasites carrying more than one MSP-1 version) ranged from 39% in Brazil to 44% in Vietnam and 60% in Tanzania. The vast majority (90%) of the typed parasite populations from Brazil and Tanzania belonged to the same seven most frequent MSP-1 gene types. In contrast, these seven gene types corresponded to only 61% of the typed parasite populations from Vietnam. Non-random associations were found between allelic types in blocks 4a and 6 among Vietnamese isolates, the same pattern being observed in independent studies performed in 1994, 1995 and 1996. These results suggest that MSP-1 is under selective pressure in the local parasite population. Nevertheless, the finding that similar MSP-1 type frequencies were found in 1994 and 1996 argues against the prominence of short-term frequency-dependent immune selection of MSP-1 polymorphisms. Non-random associations between MSP-1 allelic types, however, were not detected among isolates from Brazil and Tanzania. A preliminary analysis of the distribution of MSP-1 gene types per host among isolates from Tanzania, but not among those from Brazil and Vietnam, shows significant deviation from that expected under the null hypothesis of independent distribution of parasites carrying different gene types in the human hosts. Some epidemiological consequences of these findings are discussed
Resumo:
This article reviews current concepts of the biology of Endotrypanum spp. Data summarized here on parasite classification and taxonomic divergence found among these haemoflagellates come from our studies of molecular characterization of Endotrypanum stocks (representing an heterogenous population of reference strains and isolates from the Brazilian Amazon region) and from scientific literature. Using numerical zymotaxonomy we have demonstrated genetic diversity among these parasites. The molecular trees obtained revealed that there are, at least, three groups (distinct species?) of Endotrypanum, which are distributed in Central and South America. In concordance with this classification of the parasites there are further newer molecular data obtained using distinct markers. Moreover, comparative studies (based on the molecular genetics of the organisms) have shown the phylogenetic relationships between some Endotrypanum and related kinetoplastid lineages.
Resumo:
American trypanosomiasis is a common zoonosis in Colombia and Trypanosoma cruzi presents a wide distribution throughout the country. Although some studies based on enzyme electrophoresis profiles have described the population structure of the parasite, very few molecular analyses of genotipic markers have been conducted using Colombian strains. In this study, we amplified the non-transcribed spacer of the mini-gene by PCR, typing the isolates as T. cruzi I, T. cruzi zymodeme 3 or T. rangeli. In addition, the internal transcribed spacers of the ribosomal gene concomitant with the 5.8S rDNA were amplified and submitted to restriction fragment polymorphism analysis. The profiles were analyzed by a numerical methodology generating a phenetic dendrogram that shows heterogeneity among the T. cruzi isolates. This finding suggests a relationship between the complexity of the sylvatic transmission cycle in Colombia and the diversity of the sylvan parasites.
Resumo:
The Culicoides communities have been analyzed between 1993/1998 in the area influenced by the Yacyretá Dam Lake (Paraná River, Argentina-Paraguay). Adults of Culicoides were collected monthly by using CDC light traps exposed for 24 h in 9 sampling sites located at both margins of the river; 21 species were recorded. Highest values of species richness were recorded during 1993/1994, being Quiteria and Corpus the sites with the higest number of species (10 and 11, respectively). The species diversity was elevated in Quiteria, Zaimán, Candelaria, Santa Tecla, Capitán Meza and Corpus (Shannon's diversity index 1.0-1.9) while Corateí, Ituzaingó and Aguapey showed less richness and diversity. The more abundant species were C. insignis, C. venezuelensis, C. leopoldoi, C. limai, C. flinti, C. debilipalpis, C. paraensis and C. guttatus. C. insignis, potential vector of bluetongue virus (BTV) to domestic and wild rumiants in the Neotropical region, is the predominant species in the area and was the only species widely distributed. C. paraensis, a proven vector of Oropouche virus to humans, is a common and abundant species. C. pusillus and C. lahillei, potential vectors of BTV and a filarial parasite, respectively, were occasionally collected. The taxonomic structure of communities was constant during the study period. The occasional species were not characteristic to one particular site and their presence could be related to non-intrinsic conditions.
Resumo:
The parasite-host-environment system is dynamic, with several points of equilibrium. This makes it difficult to trace the thresholds between benefit and damage, and therefore, the definitions of commensalism, mutualism, and symbiosis become worthless. Therefore, the same concept of parasitism may encompass commensalism, mutualism, and symbiosis. Parasitism is essential for life. Life emerged as a consequence of parasitism at the molecular level, and intracellular parasitism created evolutive events that allowed species to diversify. An ecological and evolutive approach to the study of parasitism is presented here. Studies of the origin and evolution of parasitism have new perspectives with the development of molecular paleoparasitology, by which ancient parasite and host genomes can be recovered from disappeared populations. Molecular paleoparasitology points to host-parasite co-evolutive mechanisms of evolution traceable through genome retrospective studies.
Resumo:
In this study, three strains of Trypanosoma cruzi were isolated at the same time and in the same endemic region in Mexico from a human patient with chronic chagasic cardiomyopathy (RyC-H); vector (Triatoma barberi) (RyC-V); and rodent reservoir (Peromyscus peromyscus) (RyC-R). The three strains were characterized by multilocus enzyme electrophoresis, random amplified polymorphic DNA, and by pathological profiles in experimental animals (biodemes). Based on the analysis of genetic markers the three parasite strains were typed as belonging to T. cruzi I major group, discrete typing unit 1. The pathological profile of RyC-H and RyC-V strains indicated medium virulence and low mortality and, accordingly, the strains should be considered as belonging to biodeme Type III. On the other hand, the parasites from RyC-R strain induced more severe inflammatory processes and high mortality (> 40%) and were considered as belonging to biodeme Type II. The relationship between genotypes and biological characteristics in T. cruzi strains is still debated and not clearly understood. An expert committee recommended in 1999 that Biodeme Type III would correspond to T. cruzi I group, whereas Biodeme Type II, to T. cruzi II group. Our findings suggest that, at least for Mexican isolates, this correlation does not stand and that biological characteristics such as pathogenicity and virulence could be determined by factors different from those identified in the genotypic characterization
Resumo:
The genetic diversity of Plasmodium vivax has been investigated in several malaria-endemic areas, including the Brazilian Amazon region, where this is currently the most prevalent species causing malaria in humans. This review summarizes current views on the use of molecular markers to examine P. vivax populations, with a focus on studies performed in Brazilian research laboratories. We emphasize the importance of phylogenetic studies on this parasite and discuss the perspectives created by our increasing understanding of genetic diversity and population structure of this parasite for the development of new control strategies, including vaccines, and more effective drugs for the treatment of P. vivax malaria.
Resumo:
Enhanced understanding of the transmission dynamics and population genetics for Plasmodium vivax is crucial in predicting the emergence and spread of novel parasite phenotypes with major public health implications, such as new relapsing patterns, drug resistance and increased virulence. Suitable molecular markers are required for these population genetic studies. Here, we focus on two groups of molecular markers that are commonly used to analyse natural populations of P. vivax. We use markers under selective pressure, for instance, antigen-coding polymorphic genes, and markers that are not under strong natural selection, such as most minisatellite and microsatellite loci. First, we review data obtained using genes encoding for P. vivax antigens: circumsporozoite protein, merozoite surface proteins 1 and 3α, apical membrane antigen 1 and Duffy binding antigen. We next address neutral or nearly neutral molecular markers, especially microsatellite loci, providing a complete list of markers that have already been used in P. vivax populations studies. We also analyse the microsatellite loci identified in the P. vivax genome project. Finally, we discuss some practical uses for P. vivax genotyping, for example, detecting multiple-clone infections and tracking the geographic origin of isolates.
Resumo:
We have analysed the whole mitochondrial (mt) genome sequences (each ~6 kilo nucleotide base pairs in length) of four field isolates of the malaria parasite Plasmodium falciparum collected from different locations in India. Comparative genomic analyses of mt genome sequences revealed three novel India-specific single nucleotide polymorphisms. In general, high mt genome diversity was found in Indian P. falciparum, at a level comparable to African isolates. A population phylogenetic tree placed the presently sequenced Indian P. falciparum with the global isolates, while a previously sequenced Indian isolate was an outlier. Although this preliminary study is limited to a few numbers of isolates, the data have provided fundamental evidence of the mt genome diversity and evolutionary relationships of Indian P. falciparum with that of global isolates.