96 resultados para PRESSURE EFFECTS
em Scielo Saúde Pública - SP
Resumo:
A thorough understanding of protein structure and stability requires that we elucidate the molecular basis for the effects of both temperature and pressure on protein conformational transitions. While temperature effects are relatively well understood and the change in heat capacity upon unfolding has been reasonably well parameterized, the state of understanding of pressure effects is much less advanced. Ultimately, a quantitative parameterization of the volume changes (at the basis of pressure effects) accompanying protein conformational transitions will be required. The present report introduces a qualitative hypothesis based on available model compound data for the molecular basis of volume change upon protein unfolding and its dependence on temperature.
Resumo:
Obesity is the most common cause of human essential hypertension in most industrialized countries. Although the precise mechanisms of obesity hypertension are not fully understood, considerable evidence suggests that excess renal sodium reabsorption and a hypertensive shift of pressure natriuresis play a major role. Sympathetic activation appears to mediate at least part of the obesity-induced sodium retention and hypertension since adrenergic blockade or renal denervation markedly attenuates these changes. Recent observations suggest that leptin and its multiple interactions with neuropeptides in the hypothalamus may link excess weight gain with increased sympathetic activity. Leptin is produced mainly in adipocytes and is believed to regulate energy balance by acting on the hypothalamus to reduce food intake and to increase energy expenditure via sympathetic activation. Short-term administration of leptin into the cerebral ventricles increases renal sympathetic activity, and long-term leptin infusion at rates that mimic plasma concentrations found in obesity raises arterial pressure and heart rate via adrenergic activation in non-obese rodents. Transgenic mice overexpressing leptin also develop hypertension. Acute studies suggest that the renal sympathetic effects of leptin may depend on interactions with other neurochemical pathways in the hypothalamus, including the melanocortin-4 receptor (MC4-R). However, the role of this pathway in mediating the long-term effects of leptin on blood pressure is unclear. Also, it is uncertain whether there is resistance to the chronic renal sympathetic and blood pressure effects of leptin in obese subjects. In addition, leptin also has other cardiovascular and renal actions, such as stimulation of nitric oxide formation and improvement of insulin sensitivity, which may tend to reduce blood pressure in some conditions. Although the role of these mechanisms in human obesity has not been elucidated, this remains a fruitful area for further investigation, especially in view of the current "epidemic" of obesity in most industrialized countries.
Resumo:
INTRODUCTION: Previous studies describe an imbalance of the autonomic nervous system in Chagas' disease causing increased sympathetic activity, which could influence the genesis of hypertension. However, patients undergoing regular physical exercise could counteract this condition, considering that exercise causes physiological responses through autonomic and hemodynamic changes that positively affect the cardiovascular system. This study aimed to evaluate the effects of an exercise program on blood pressure in hypertensive patients with chronic Chagas' heart disease. METHODS: We recruited 17 patients to a 24-week regular exercise program and used ambulatory blood pressure monitoring before and after training. We determined the differences in the systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean blood pressure (MBP) from the beginning to the end of the study. RESULTS: The blood pressures were evaluated in general and during periods of wakefulness and sleep, respectively: SBP (p = 0.34; 0.23; 0.85), DBP (p = 0.46; 0.44; 0.94) and MBP (p = 0.41; 0.30; 0.97). CONCLUSIONS: There was no statistically significant change in blood pressure after the 24-week exercise program; however, we concluded that physical training is safe for patients with chronic Chagas' disease, with no incidence of increase in blood pressure.
Resumo:
Abstract Hypertension affects 25% of the world's population and is considered a risk factor for cardiovascular disorders and other diseases. The aim of this study was to examine the evidence regarding the acute effect of exercise on blood pressure (BP) using meta-analytic measures. Sixty-five studies were compared using effect sizes (ES), and heterogeneity and Z tests to determine whether the ES were different from zero. The mean corrected global ES for exercise conditions were -0.56 (-4.80 mmHg) for systolic BP (sBP) and -0.44 (-3.19 mmHg) for diastolic BP (dBP; z ≠ 0 for all; p < 0.05). The reduction in BP was significant regardless of the participant's initial BP level, gender, physical activity level, antihypertensive drug intake, type of BP measurement, time of day in which the BP was measured, type of exercise performed, and exercise training program (p < 0.05 for all). ANOVA tests revealed that BP reductions were greater if participants were males, not receiving antihypertensive medication, physically active, and if the exercise performed was jogging. A significant inverse correlation was found between age and BP ES, body mass index (BMI) and sBP ES, duration of the exercise's session and sBP ES, and between the number of sets performed in the resistance exercise program and sBP ES (p < 0.05). Regardless of the characteristics of the participants and exercise, there was a reduction in BP in the hours following an exercise session. However, the hypotensive effect was greater when the exercise was performed as a preventive strategy in those physically active and without antihypertensive medication.
Resumo:
ABSTRACT For drip irrigation design and management, it is necessary to know the relation between flow and pressure acting on emitters. In the case of subsurface drip irrigation, the backpressure phenomenon may change the hydraulic characteristics of emitters. Thus, this study aimed at determining such relationship between flow and pressure of different driplines in surface and subsurface conditions; aiming to find possible differences in hydraulic behavior. We tested four emitter types; two pressure compensating (D5000 and Hydro PCND) and two non-pressure compensating (TalDrip and Jardiline). Emitter flow rates were attained in atmospheric conditions and submerged in water, in which submergence levels represented backpressure. Assays were performed using inlet pressures of 80, 100, 120, and 150 kPa for the Hydro PCND dripline and 25, 50, 100, and 150 kPa for the other ones; the backpressures were of 0.49, 1.47, 2.45, 4.41 and 6.37 kPa with four replications. The emitters had their proportionality constants and discharge exponents changed in submerged applications, representing backpressure effect. Non-pressure compensating emitters had their discharge exponent decreased, while in pressure compensating ones, it was increased. Backpressure reduced emitter flow rates at all evaluated pressures.
Resumo:
Cardiac hypertrophy that accompanies hypertension seems to be a phenomenon of multifactorial origin whose development does not seem to depend on an increased pressure load alone, but also on local growth factors and cardioadrenergic activity. The aim of the present study was to determine if sympathetic renal denervation and its effects on arterial pressure level can prevent cardiac hypertrophy and if it can also delay the onset and attenuate the severity of deoxycorticosterone acetate (DOCA)-salt hypertension. DOCA-salt treatment was initiated in rats seven days after uninephrectomy and contralateral renal denervation or sham renal denervation. DOCA (15 mg/kg, sc) or vehicle (soybean oil, 0.25 ml per animal) was administered twice a week for two weeks. Rats treated with DOCA or vehicle (control) were provided drinking water containing 1% NaCl and 0.03% KCl. At the end of the treatment period, mean arterial pressure (MAP) and heart rate measurements were made in conscious animals. Under ether anesthesia, the heart was removed and the right and left ventricles (including the septum) were separated and weighed. DOCA-salt treatment produced a significant increase in left ventricular weight/body weight (LVW/BW) ratio (2.44 ± 0.09 mg/g) and right ventricular weight/body weight (RVW/BW) ratio (0.53 ± 0.01 mg/g) compared to control (1.92 ± 0.04 and 0.48 ± 0.01 mg/g, respectively) rats. MAP was significantly higher (39%) in DOCA-salt rats. Renal denervation prevented (P>0.05) the development of hypertension in DOCA-salt rats but did not prevent the increase in LVW/BW (2.27 ± 0.03 mg/g) and RVW/BW (0.52 ± 0.01 mg/g). We have shown that the increase in arterial pressure level is not responsible for cardiac hypertrophy, which may be more related to other events associated with DOCA-salt hypertension, such as an increase in cardiac sympathetic activity
Resumo:
The available data suggests that hypotension caused by Hg2+ administration may be produced by a reduction of cardiac contractility or by cholinergic mechanisms. The hemodynamic effects of an intravenous injection of HgCl2 (5 mg/kg) were studied in anesthetized rats (N = 12) by monitoring left and right ventricular (LV and RV) systolic and diastolic pressures for 120 min. After HgCl2 administration the LV systolic pressure decreased only after 40 min (99 ± 3.3 to 85 ± 8.8 mmHg at 80 min). However, RV systolic pressure increased, initially slowly but faster after 30 min (25 ± 1.8 to 42 ± 1.6 mmHg at 80 min). Both right and left diastolic pressures increased after HgCl2 treatment, suggesting the development of diastolic ventricular dysfunction. Since HgCl2 could be increasing pulmonary vascular resistance, isolated lungs (N = 10) were perfused for 80 min with Krebs solution (continuous flow of 10 ml/min) containing or not 5 µM HgCl2. A continuous increase in pulmonary vascular resistance was observed, suggesting the direct effect of Hg2+ on the pulmonary vessels (12 ± 0.4 to 29 ± 3.2 mmHg at 30 min). To examine the interactions of Hg2+ and changes in cholinergic activity we analyzed the effects of acetylcholine (Ach) on mean arterial blood pressure (ABP) in anesthetized rats (N = 9) before and after Hg2+ treatment (5 mg/kg). Using the same amount and route used to study the hemodynamic effects we also examined the effects of Hg2+ administration on heart and plasma cholinesterase activity (N = 10). The in vivo hypotensive response to Ach (0.035 to 10.5 µg) was reduced after Hg2+ treatment. Cholinesterase activity (µM h-1 mg protein-1) increased in heart and plasma (32 and 65%, respectively) after Hg2+ treatment. In conclusion, the reduction in ABP produced by Hg2+ is not dependent on a putative increase in cholinergic activity. HgCl2 mainly affects cardiac function. The increased pulmonary vascular resistance and cardiac failure due to diastolic dysfunction of both ventricles are factors that might contribute to the reduction of cardiac output and the fall in arterial pressure.
Resumo:
We prospectively evaluated the effects of positive end-expiratory pressure (PEEP) on the respiratory mechanical properties and hemodynamics of 10 postoperative adult cardiac patients undergoing mechanical ventilation while still anesthetized and paralyzed. The respiratory mechanics was evaluated by the inflation inspiratory occlusion method and hemodynamics by conventional methods. Each patient was randomized to a different level of PEEP (5, 10 and 15 cmH2O), while zero end-expiratory pressure (ZEEP) was established as control. PEEP of 15-min duration was applied at 20-min intervals. The frequency dependence of resistance and the viscoelastic properties and elastance of the respiratory system were evaluated together with hemodynamic and respiratory indexes. We observed a significant decrease in total airway resistance (13.12 ± 0.79 cmH2O l-1 s-1 at ZEEP, 11.94 ± 0.55 cmH2O l-1 s-1 (P<0.0197) at 5 cmH2O of PEEP, 11.42 ± 0.71 cmH2O l-1 s-1 (P<0.0255) at 10 cmH2O of PEEP, and 10.32 ± 0.57 cmH2O l-1 s-1 (P<0.0002) at 15 cmH2O of PEEP). The elastance (Ers; cmH2O/l) was not significantly modified by PEEP from zero (23.49 ± 1.21) to 5 cmH2O (21.89 ± 0.70). However, a significant decrease (P<0.0003) at 10 cmH2O PEEP (18.86 ± 1.13), as well as (P<0.0001) at 15 cmH2O (18.41 ± 0.82) was observed after PEEP application. Volume dependence of viscoelastic properties showed a slight but not significant tendency to increase with PEEP. The significant decreases in cardiac index (l min-1 m-2) due to PEEP increments (3.90 ± 0.22 at ZEEP, 3.43 ± 0.17 (P<0.0260) at 5 cmH2O of PEEP, 3.31 ± 0.22 (P<0.0260) at 10 cmH2O of PEEP, and 3.10 ± 0.22 (P<0.0113) at 15 cmH2O of PEEP) were compensated for by an increase in arterial oxygen content owing to shunt fraction reduction (%) from 22.26 ± 2.28 at ZEEP to 11.66 ± 1.24 at PEEP of 15 cmH2O (P<0.0007). We conclude that increments in PEEP resulted in a reduction of both airway resistance and respiratory elastance. These results could reflect improvement in respiratory mechanics. However, due to possible hemodynamic instability, PEEP should be carefully applied to postoperative cardiac patients.
Resumo:
Ouabain increases vascular resistance and may induce hypertension by inhibiting the Na+ pump. The effects of 0.18 and 18 µg/kg, and 1.8 mg/kg ouabain pretreatment on the phenylephrine (PHE; 0.1, 0.25 and 0.5 µg, in bolus)-evoked pressor responses were investigated using anesthetized normotensive (control and uninephrectomized) and hypertensive (1K1C and DOCA-salt treated) rats. Treatment with 18 µg/kg ouabain increased systolic and diastolic blood pressure in all groups studied. However, the magnitude of this increase was larger for the hypertensive 1K1C and DOCA-salt rats than for normotensive animals, while the pressor effect of 0.18 µg/kg ouabain was greater only in DOCA-salt rats. A very large dose (1.8 mg/kg) produced toxic effects on the normotensive control but not on uninephrectomized or 1K1C rats. Rat tail vascular beds were perfused to analyze the effects of 10 nM ouabain on the pressor response to PHE. In all animals, 10 nM ouabain increased the PHE pressor response, but this increase was larger in hypertensive DOCA-salt rats than in normotensive and 1K1C rats. Results suggested that a) increases in diastolic blood pressure induced by 18 µg/kg ouabain were larger in hypertensive than normotensive rats; b) in DOCA-salt rats, smaller ouabain doses had a stronger effect than in other groups; c) hypertensive and uninephrectomized rats were less sensitive to toxic doses of ouabain, and d) after treatment with 10 nM ouabain isolated tail vascular beds from DOCA-salt rats were more sensitive to the pressor effect of PHE than those from normotensive and 1K1C hypertensive rats. These data suggest that very small doses of ouabain, which might produce nanomolar plasma concentrations, enhance pressor reactivity in DOCA-salt hypertensive rats, supporting the idea that endogenous ouabain may contribute to the increase and maintenance of vascular tone in hypertension.
Resumo:
The effects of exercise and water replacement on intraocular pressure (IOP) have not been well established. Furthermore, it is not known whether the temperature of the fluid ingested influences the IOP response. In the present study we determined the effect of water ingestion at three temperatures (10, 24 and 38ºC; 600 ml 15 min before and 240 ml 15, 30 and 45 min after the beginning of each experimental session) on the IOP of six healthy male volunteers (age = 24.0 ± 3.5 years, weight = 67.0 ± 4.8 kg, peak oxygen uptake (VO2peak) = 47.8 ± 9.1 ml kg-1 min-1). The subjects exercised until exhaustion on a cycle ergometer at a 60% VO2peak in a thermoneutral environment. IOP was measured before and after exercise and during recovery (15, 30 and 45 min) using the applanation tonometry method. Skin and rectal temperatures, heart rate and oxygen uptake were measured continuously. IOP was similar for the right eye and the left eye and increased post-water ingestion under both exercising and resting conditions (P<0.05) but did not differ between resting and exercising situations, or between the three water temperatures. Time to exhaustion was not affected by the different water temperatures. Rectal temperature, hydration status, heart rate, oxygen uptake, carbon dioxide extraction and lactate concentration were increased by exercise but were not affected by water temperature. We conclude that IOP was not affected by exercise and that water ingestion increased IOP as expected, regardless of water temperature.
Resumo:
A double-blind, randomized, placebo-controlled study was carried out on 44 hypertensive type 2 diabetic subjects previously treated by diet associated or not with sulfonylurea to assess the effects of acarbose-induced glycemic control on blood pressure (BP) and hormonal parameters. Before randomization and after a 22-week treatment period (100 to 300 mg/day), the subjects were submitted to a standard meal test and to 24-h ambulatory BP monitoring (ABPM) and had plasma glucose, glycosylated hemoglobin, lipid profile, insulin, proinsulin and leptin levels determined. Weight loss was found only in the acarbose-treated group (75.1 ± 11.6 to 73.1 ± 11.6 kg, P<0.01). Glycosylated hemoglobin decreased only in the acarbose group (6.4 ± 1.7 to 5.6 ± 1.9%, P<0.05). Fasting proinsulin decreased only in the acarbose group (23.4 ± 19.3 to 14.3 ± 13.6 pmol/l, P<0.05), while leptin decreased in both (placebo group: 26.3 ± 6.1 to 23.3 ± 9.4 and acarbose group: 25.0 ± 5.5 to 22.7 ± 7.9 ng/ml, P<0.05). When the subset of acarbose-treated patients who improved glycemic control was considered, significant reductions in diurnal systolic, diastolic and mean BP (102.3 ± 6.0 to 99.0 ± 6.6 mmHg, P<0.05) were found. Acarbose monotherapy or combined with sulfonylurea was effective in improving glycemic control in hypertensive diabetic patients. Acarbose-induced improvement in metabolic control may reduce BP in these patients. Our data did not suggest a direct action of acarbose on insulin resistance or leptin levels.
Resumo:
The aim of the present study was to examine the feasibility of DNA microarray technology in an attempt to construct an evaluation system for determining gas toxicity using high-pressure conditions, as it is well known that pressure increases the concentration of a gas. As a first step, we used yeast (Saccharomyces cerevisiae) as the indicator organism and analyzed the mRNA expression profiles after exposure of yeast cells to nitrogen gas. Nitrogen gas was selected as a negative control since this gas has low toxicity. Yeast DNA microarray analysis revealed induction of genes whose products were localized to the membranes, and of genes that are involved in or contribute to energy production. Furthermore, we found that nitrogen gas significantly affected the transport system in the cells. Interestingly, nitrogen gas also resulted in induction of cold-shock responsive genes. These results suggest the possibility of applying yeast DNA microarray to gas bioassays up to 40 MPa. We therefore think that "bioassays" are ideal for use in environmental control and protection studies.
Resumo:
Fifty-seven type 2 diabetic patients with metabolic syndrome and on insulin were assessed by a paired analysis before and 6 months after addition of metformin as combination therapy to evaluate the impact of the association on glycemic control, blood pressure, and lipid profile. This was a historical cohort study in which the files of type 2 diabetic patients with metabolic syndrome on insulin were reviewed. The body mass index (BMI), waist circumference, lipid profile, A1C level, fasting blood glucose level, daily dose of NPH insulin, systolic blood pressure, and diastolic blood pressure were assessed in each patient before the start of metformin and 6 months after the initiation of combination therapy. Glycemic control significantly improved (P < 0.001) after the addition of metformin (1404.4 ± 565.5 mg/day), with 14% of the 57 patients reaching A1C levels up to 7%, and 53% reaching values up to 8%. There was a statistically significant reduction (P < 0.05) of total cholesterol (229.0 ± 29.5 to 214.2 ± 25.0 mg/dL), BMI (30.7 ± 5.4 to 29.0 ± 4.0 kg/m²), waist circumference (124.6 ± 11.7 to 117.3 ± 9.3 cm), and daily necessity of insulin. The reduction of total cholesterol occurred independently of the reductions of A1C (9.65 ± 1.03 to 8.18 ± 1.01%) and BMI and the reduction of BMI and WC did not interfere with the improvement of A1C. In conclusion, our study showed the efficacy of the administration of metformin and insulin simultaneously without negative effects. No changes were detected in HDL-cholesterol or blood pressure.
Resumo:
The application of continuous positive airway pressure (CPAP) produces important hemodynamic alterations, which can influence breathing pattern (BP) and heart rate variability (HRV). The aim of this study was to evaluate the effects of different levels of CPAP on postoperative BP and HRV after coronary artery bypass grafting (CABG) surgery and the impact of CABG surgery on these variables. Eighteen patients undergoing CABG were evaluated postoperatively during spontaneous breathing (SB) and application of four levels of CPAP applied in random order: sham (3 cmH2O), 5 cmH2O, 8 cmH2O, and 12 cmH2O. HRV was analyzed in time and frequency domains and by nonlinear methods and BP was analyzed in different variables (breathing frequency, inspiratory tidal volume, inspiratory and expiratory time, total breath time, fractional inspiratory time, percent rib cage inspiratory contribution to tidal volume, phase relation during inspiration, phase relation during expiration). There was significant postoperative impairment in HRV and BP after CABG surgery compared to the preoperative period and improvement of DFAα1, DFAα2 and SD2 indexes, and ventilatory variables during postoperative CPAP application, with a greater effect when 8 and 12 cmH2O were applied. A positive correlation (P < 0.05 and r = 0.64; Spearman) was found between DFAα1 and inspiratory time to the delta of 12 cmH2O and SB of HRV and respiratory values. Acute application of CPAP was able to alter cardiac autonomic nervous system control and BP of patients undergoing CABG surgery and 8 and 12 cmH2O of CPAP provided the best performance of pulmonary and cardiac autonomic functions.