32 resultados para Oscillations - étoiles
em Scielo Saúde Pública - SP
Resumo:
The equilibrium dynamics of native and introduced blowflies is modelled using a density-dependent model of population growth that takes into account important features of the life-history in these flies. A theoretical analysis indicates that the product of maximum fecundity and survival is the primary determinant of the dynamics. Cochliomyia macellaria, a blowfly native to the Americas and the introduced Chrysomya megacephala and Chrysomya putoria, differ in their dynamics in that the first species shows a damping oscillatory behavior leading to a one-point equilibrium, whereas in the last two species population numbers show a two-point limit cycle. Simulations showed that variation in fecundity has a marked effect on the dynamics and indicates the possibility of transitions from one-point equilibrium to bounded oscillations and aperiodic behavior. Variation in survival has much less influence on the dynamics.
Resumo:
The sensitivity of parameters that govern the stability of population size in Chrysomya albiceps and describe its spatial dynamics was evaluated in this study. The dynamics was modeled using a density-dependent model of population growth. Our simulations show that variation in fecundity and mainly in survival has marked effect on the dynamics and indicates the possibility of transitions from one-point equilibrium to bounded oscillations. C. albiceps exhibits a two-point limit cycle, but the introduction of diffusive dispersal induces an evident qualitative shift from two-point limit cycle to a one fixed-point dynamics. Population dynamics of C. albiceps is here compared to dynamics of Cochliomyia macellaria, C. megacephala and C. putoria.
Multiple scales analysis of nonlinear oscillations of a portal frame foundation for several machines
Resumo:
An analytical study of the nonlinear vibrations of a multiple machines portal frame foundation is presented. Two unbalanced rotating machines are considered, none of them resonant with the lower natural frequencies of the supporting structure. Their combined frequencies is set in such a way as to excite, due to nonlinear behavior of the frame, either the first anti-symmetrical mode (sway) or the first symmetrical mode. The physical and geometrical characteristics of the frame are chosen to tune the natural frequencies of these two modes into a 1:2 internal resonance. The problem is reduced to a two degrees of freedom model and its nonlinear equations of motions are derived via a Lagrangian approach. Asymptotic perturbation solutions of these equations are obtained via the Multiple Scales Method.
Resumo:
Outward current oscillations associated with transient membrane hyperpolarizations were induced in murine macrophage polykaryons by membrane depolarization in the absence of external Na+. Oscillations corresponded to a cyclic activation of Ca2+-dependent K+ currents (IKCa) probably correlated with variations in intracellular Ca2+ concentration. Addition of external Na+ (8 mM) immediately abolished the outward current oscillations, suggesting that the absence of the cation is necessary not only for their induction but also for their maintenance. Oscillations were completely blocked by nisoldipine. Ruthenium red and ryanodine reduced the number of outward current cycles in each episode, whereas quercetin prolonged the hyperpolarization 2- to 15-fold. Neither low molecular weight heparin nor the absence of a Na+ gradient across the membrane had any influence on oscillations. The evidence suggests that Ca2+ entry through a pathway sensitive to Ca2+ channel blockers is elicited by membrane depolarization in Na+-free medium and is essential to initiate oscillations, which are also dependent on the cyclic release of Ca2+ from intracellular Ca2+-sensitive stores; Ca2+ ATPase acts by reducing intracellular Ca2+, thus allowing slow deactivation of IKCa. Evidence is presented that neither a Na+/Ca2+ antiporter nor Ca2+ release from IP3-sensitive Ca2+ stores participate directly in the mechanism of oscillation
Resumo:
Hematological parameters, intraerythrocytic phosphates, hemoglobin, and whole blood Bohr effect of the South American armored catfish Hoplostenum littorale were studied during different seasons of the year. In addition, the degree of dependence on air breathing was determined for this species. The hematological parameters presented seasonal variations, which were not correlated to oxygen, temperature, and water level oscillations. Five anodic hemoglobin fractions were detected in starch gel electrophoresis. In addition to ATP, GTP and Fe-GTP being detected, 2,3-DPG was also detected in red blood cells of H. littorale. The latter is an intraerythrocytic phosphate characteristic to red blood cells of mammalians. The increased production of 2,3-DPG could be associated with decreasing Hb-O2 affinity and both features could be related to environmental temperature increase. Whole blood Bohr effect was influenced by water temperature. This study confirms H. littorale to be continuous and not obligate air breather, under all dissolved oxygen level conditions.
Resumo:
Global warming has potentially catastrophic impacts in Amazonia, while at the same time maintenance of the Amazon forest offers one of the most valuable and cost-effective options for mitigating climate change. We know that the El Niño phenomenon, caused by temperature oscillations of surface water in the Pacific, has serious impacts in Amazonia, causing droughts and forest fires (as in 1997-1998). Temperature oscillations in the Atlantic also provoke severe droughts (as in 2005). We also know that Amazonian trees die both from fires and from water stress under hot, dry conditions. In addition, water recycled through the forest provides rainfall that maintains climatic conditions appropriate for tropical forest, especially in the dry season. What we need to know quickly, through intensified research, includes progress in representing El Niño and the Atlantic oscillations in climatic models, representation of biotic feedbacks in models used for decision-making about global warming, and narrowing the range of estimating climate sensitivity to reduce uncertainty about the probability of very severe impacts. Items that need to be negotiated include the definition of "dangerous" climate change, with the corresponding maximum levels of greenhouse gases in the atmosphere. Mitigation of global warming must include maintaining the Amazon forest, which has benefits for combating global warming from two separate roles: cutting the flow the emissions of carbon each year from the rapid pace of deforestation, and avoiding emission of the stock of carbon in the remaining forest that can be released by various ways, including climate change itself. Barriers to rewarding forest maintenance include the need for financial rewards for both of these roles. Other needs are for continued reduction of uncertainty regarding emissions and deforestation processes, as well as agreement on the basis of carbon accounting. As one of the countries most subject to impacts of climate change, Brazil must assume the leadership in fighting global warming.
Resumo:
The Brugada syndrome is a rare condition, and due to its mutating manner of presentation it may be difficult to diagnose. We report one case and discuss the diagnostic aspects and the clinical outcome of one patient with characteristic findings of this syndrome. These findings are especially defined by J-ST elevation in the right leads of serial electrocardiographic records, wide oscillations of J points and ST segments during 24-hour Holter monitoring, and nocturnal sudden death. We stress the importance of the Holter monitor findings for diagnostic complementation. Through this method it is possible to establish a correlation between vigil activities and sleep and the variability of the degree of impairment in ventricular repolarization.
Resumo:
We report here 2 cases of sinus arrhythmia considered to be a form of nonrespiratory sinus arrhythmia because they did not have variances in the RR interval sequence within the oscillations modulated by respiration. Because the patients had pulsus alternans similar that observed in bigeminy, and because they did not have signs or symptoms of heart failure, we believe the arrhythmias represent intrinsic alterations of the electric activity of the sinus node
Resumo:
Interactions between two species that result in reduced growth rates for both and extinction of one of the species are generally considered cases of asymmetric interspecific competition. Exploitative or interference competition is the usual mechanism invoked. Here we describe another mechanism producing the same result, named apparent competition through facilitation (ACF), observed between Melanoides tuberculata and Biomphalaria glabrata populations. The superior competitor actually gives some benefit to the other species, whose population becomes unstable with progressively increasing oscillations, leading to extinction. A model of ACF using difference equations suggests initial dynamics distinct from traditional interspecific competition. The dynamics of two freshwater snails in the field and in laboratory experiments suggest ACF, and these relations should be considered in studies of schistosomiasis control. ACF could occur in natural populations, but might have gone undetected because the final result is similar to traditional interspecific competition.
Resumo:
Current clinical data show a clear relationship between the zoonosis rates of Diphyllobothrium pacificum and Anisakis caused by the El Niño Southern Oscillations (ENSO) phenomenon along the Chilean coast. These parasites are endemic to the region and have a specific habitat distribution. D. pacificum prefers the warmer waters in the northern coast, while Anisakis prefers the colder waters of Southern Chile. The ENSO phenomenon causes a drastic inversion in the seawater temperatures in this region, modifying both the cool nutrient-rich seawater and the local ecology. This causes a latitudinal shift in marine parasite distribution and prevalence, as well as drastic environmental changes. The abundance of human mummies and archaeological coastal sites in the Atacama Desert provides an excellent model to test the ENSO impact on antiquity. We review the clinical and archaeological literature debating to what extent these parasites affected the health of the Chinchorros, the earliest settlers of this region. We hypothesise the Chinchorro and their descendants were affected by this natural and cyclical ENSO phenomenon and should therefore present fluctuating rates of D. pacificum and Anisakis infestations.
Resumo:
Simulations have been carried out on the bromate - oxalic acid - Ce(IV) - acetone oscillating reaction, under flow conditions, using Field and Boyd's model (J. Phys. Chem. 1985, 89, 3707). Many different complex dynamic behaviors were found, including simple periodic oscillations, complex periodic oscillations, quasiperiodicity and chaos. Some of these complex oscillations can be understood as belonging to a Farey sequence. The many different behaviors were systematized in a phase diagram which shows that some regions of complex patterns were nested with one inside the other. The existence of almost all known dynamic behavior for this system allows the suggestion that it can be used as a model for some very complex phenomena that occur in biological systems.
Resumo:
New chemical systems have been recently designed for the study of complex phenomena such as oscillatory dynamics in the temporal domain and spatiotemporal pattern formation. Systems derived from oscillators based on the chemistry of bromate are the most extensively studied, with the celebrated Belousov-Zhabotinsky (BZ) reaction being the most popular example. Problems such as the formation of bubbles (CO2) and solid precipitate in the course of the reaction and the occurrence of simply short-lived oscillations under batch conditions are very common and, in some cases, compromise the use of some of these systems. It is investigated in this paper the dynamic behavior of the bromate/hypophosphite/acetone/dual catalyst system, which has been sugested as an interesting alternative to circumvent those inconvenients. In this work, manganese and ferroin are employed as catalysts and the complete system (BrO3-/H2PO2-/acetone/Mn(II)-ferroin) is studied under batch conditions. Temporal symmetry breaking was studied in a reactor under agitation by means of simultaneous records of the potential changes of platinum and Ag/AgBr electrodes, both measured versus a reversible hydrogen electrode. Additionally, spatio-temporal formation of target patterns and spiral waves were obtained when the oscillating mixture was placed in a quasi two-dimensional reactor.
Resumo:
It is investigated in the present contribution the oscillatory co-electrodeposition of CuSn on a polycrystalline gold surface in the presence of Triton X-100 surfactant and citric acid as additive, in acidic media. The experiments were conducted under potentiostatic control and the system dynamics characterized in terms of the morphology and stability of the current oscillations. Besides modulations in the frequency and amplitude of the current oscillations, several patterned states were observed, including relaxation-like and mixed mode oscillations. The oscillations were found to be very robust and some time series presented regular motions up to about two hours.
Resumo:
We present in this work the influence of temperature on the dynamics of homogeneous chemical systems containing bromate and 1,4-cyclohexanedione (1,4-CHD) in acidic media. In particular, the following systems were studied: bromate/1,4-CHD/acid, bromate/1,4-CHD/ferroin/acid and bromate/1,4-CHD/trisbipyridine ruthenium/acid. Investigations were carried out by means of an electrochemical probe, at five temperatures between 5 and 45 °C. Activation energies (Ea) were estimated in different ways for the pre-oscillatory and oscillatory regimes. In any case, the Ea was found to depend on the catalyst, composition and initial concentrations. In addition, it was observed that ferroin and trisbipyridine ruthenium act as catalysts only during the transition between the induction period and oscillatory regime.
Resumo:
Spatiotemporal pattern formation in reaction-transport systems takes place spontaneously when the system is kept far from thermodynamic equilibrium. Targets, reaction fronts, waves, spirals, spots and stripes are some typical examples of selforganized structuring. In electrochemical systems, monitoring spatiotemporal patterns of potential in the solid/liquid interface can be done by the use of equally distributed microprobes located close to the working electrode. However, the physical size of each probe can limit the spatial resolution and alter mass transport properties. In contrast, the direct measurement of discrete electrodes does not suffer from this limitation and allows the accurate manipulation of the spatial coupling through changes in resistors connected to the electric circuit. In this paper, the development of an electrochemical setup for multichannel data acquisition with spatiotemporal resolution is described, especially to monitor low levels of currents usually observed in the electro-oxidation of small organic molecules.