10 resultados para Osborn, Addison
em Scielo Saúde Pública - SP
Resumo:
Adrenocortical autoantibodies (ACA), present in 60-80% of patients with idiopathic Addison's disease, are conventionally detected by indirect immunofluorescence (IIF) on frozen sections of adrenal glands. The large-scale use of IIF is limited in part by the need for a fluorescence microscope and the fact that histological sections cannot be stored for long periods of time. To circumvent these restrictions we developed a novel peroxidase-labelled protein A (PLPA) technique for the detection of ACA in patients with Addison's disease and compared the results with those obtained with the classical IIF assay. We studied serum samples from 90 healthy control subjects and 22 patients with Addison's disease, who had been clinically classified into two groups: idiopathic (N = 13) and granulomatous (N = 9). ACA-PLPA were detected in 10/22 (45%) patients: 9/13 (69%) with the idiopathic form and 1/9 (11%) with the granulomatous form, whereas ACA-IIF were detected in 11/22 patients (50%): 10/13 (77%) with the idiopathic form and 1/9 (11%) with the granulomatous form. Twelve of the 13 idiopathic addisonians (92%) were positive for either ACA-PLPA or ACA-IIF, but only 7 were positive by both methods. In contrast, none of 90 healthy subjects was found to be positive for ACA. Thus, our study shows that the PLPA-based technique is useful, has technical advantages over the IIF method (by not requiring the use of a fluorescence microscope and by permitting section storage for long periods of time). However, since it is only 60% concordant with the ACA-IIF method, it should be considered complementary instead of an alternative method to IIF for the detection of ACA in human sera.
Resumo:
É possível afirmar que estão ocorrendo mudanças no padrão das políticas públicas brasileiras, sobretudo na esfera local de governo. Tais mudanças podem ser entendidas como parte de um processo de construção de novas formas de gestão pública e verificadas a partir de práticas inovadoras na prestação de serviços por governos subnacionais no país. Com o objetivo de discutir a inovação sob a perspectiva de um administrador público, será apresentado um caso prático - premiado pelo Programa Gestão Pública e Cidadania, em 1996 - que exemplifica a ocorrência dessas mudanças.
Resumo:
FUNDAMENTO: Estudos têm sido realizados para identificar o melhor preditor antropométrico de doenças crônicas em diferentes populações. OBJETIVO: Verificar a relação entre medidas antropométricas e fatores de risco (perfil lipídico e pressão arterial) para doenças cardiovasculares. MÉTODOS: Estudo transversal com 180 homens e 120 mulheres, idade média de 39,6±10,6 anos. Avaliou-se: índice de massa corporal (IMC), circunferência da cintura (CC), percentual de gordura corporal (%GC), relação cintura quadril (RCQ), perfil lipídico, glicemia e pressão arterial. RESULTADOS: IMC, CC e RCQ foram maiores nos homens e %GC nas mulheres (p<0,001). A proporção de casos alterados de RCQ e %GC em relação a LDL-c e CT foi maior no sexo masculino. Indivíduos normais para CC tiveram alteração para LDL-c, CT e HDL-c. Houve correlação entre IMC e CC (homens: r=0,97 e mulheres: r=0,95; p<0,001). Nos homens a melhor correlação (p<0,001) foi entre CC e RCQ (r=0,82) e nas mulheres %GC e CC (r=0,80). Triglicerídeos (TG) teve correlação com RCQ (masculino: r=0,992; feminino: r= 0,95; p<0,001), e com CC (masculino: r=0,82; feminino: r=0,79; p<0,001). Na análise múltipla (Razão de prevalência - RP, Intervalo de Confiança - IC), o IMC esteve associado ao colesterol total (RP=1,9; IC95% 1,01-3,69; p=0,051) no sexo masculino e fracamente associado com TG/HDL-colesterol (RP= 1,8; IC95% 1,01-3,45; p=0,062) no sexo feminino. CONCLUSÃO: O IMC e a RCQ foram os indicadores antropométricos com maior correlação com o perfil lipídico em ambos os sexos. Esses dados suportam a hipótese de que o IMC e a RCQ podem ser considerados como fatores de risco para a doença cardiovascular.
Resumo:
Depois de uma breve introdução, mostrando a importância que o gênero Tripsacum desempenha hoje nos problemas da origem do milho, fizemos um estudo detalhado da meiose na nova espécie Tripsacum australe, descrita recentemente por CUTLER e ANDERSON (3) e espécie esta encontrada em estado selvagem na América do Sul. Todas as fases da meiose mostraram-se normais e o número cte cromosômios, facilmente determinado nas fases diacinese, metáfase I, metáfase II, é de 18 para a fase haplóide. Esta espécie não difere, quanto ao número de cromosômios, da forma diplóide Tripsacum dactyloide e da espécie Tripsacum floridanum, estudadas por LONGLEY (5). Segundo MANGELSDORF e REEVES (10) as formas de Tripsacum encontradas na América Central têm 72 cromosômios e são consideradas como autotetraplóides. Entretanto, no que se refere à presença de "knobs" nos cromosômios, esta espécie parece diferir da espécie estudada por LONGLEY (5). Tripsacum australe não apresenta "knobs" nas extremidades dos cromosômios e provavelmente também nas outras regiões pois as figuras que puderam ser examinadas não mostraram essa estrutura. Segundo MANGELSDORF e REEVES (10) os "knobs" presentes no milho teriam vindo de Tripsacum, por meio de cruzamento entre estes dois gêneros. Assim sendo, os tipos de milho cultivados próximos ao centro de distribuição das espécies de Tripsacum até então conhecidas, e que é a região da América Central, principalmente o México, deveriam se apresentar bastante contaminados por este gênero e apresentariam mais "knobs" do que aqueles tipos de milho cultivados ionge da referida região. Observações de vários autores (6, 7, 9, 20, 11 e 12) confirmam esta hipótese, inclusive aquelas realizadas por um dos autores deste trabalho (Graner, não publicado) em material sul-americano. Tendo sido encontrada agora esta nova espécie de Tripsacum na América do Sul, aparentemente sem "knobs", torna-se interessante verificar se ela não poderia ter contribuido para o estabelecimento das formas de milho sem "knobs" encontradas na América do Sul. Cruzamentos entre milho e Tripsacum australe foram realizados por um dos autores (Addison), não lendo porém produzido sementes. Outras pesuisas tornam-se então necessárias afim de que se possa tirar conclusões a respeito de tão importante assunto.
Resumo:
1) It may seem rather strange that, in spite of the efforts of a considerable number of scientists, the problem of the origin of indian corn or maize still has remained an open question. There are no fossil remains or archaeological relics except those which are quite identical with types still existing. (Fig. 1). The main difficulty in finding the wild ancestor- which may still exist - results from the fact that it has been somewhat difficult to decide what it should be like and also where to look for it. 2) There is no need to discuss the literature since an excellent review has recently been published by MANGELSDORF and REEVES (1939). It may be sufficient to state that there are basically two hypotheses, that of ST. HILAIRE (1829) who considered Brazilian pod corn as the nearest relative of wild corn still existing, and that of ASCHERSON (1875) who considered Euchlaena from Central America as the wild ancestor of corn. Later hypotheses represent or variants of these two hypotheses or of other concepts, howewer generally with neither disproving their predecessors nor showing why the new hypotheses were better than the older ones. Since nearly all possible combinations of ideas have thus been put forward, it har- dly seems possible to find something theoretically new, while it is essential first to produce new facts. 3) The studies about the origin of maize received a new impulse from MANGELSDORF and REEVES'S experimental work on both Zea-Tripsacum and Zea-Euchlaena hybrids. Independently I started experiments in 1937 with the hope that new results might be obtained when using South American material. Having lost priority in some respects I decided to withold publication untill now, when I can put forward more concise ideas about the origin of maize, based on a new experimental reconstruction of the "wild type". 4) The two main aspects of MANGELSDORF and REEVES hypothesis are discussed. We agree with the authors that ST. HILAIRE's theory is probably correct in so far as the tunicata gene is a wild type relic gene, but cannot accept the reconstruction of wild corn as a homozygous pod corn with a hermaphroditic tassel. As shown experimentally (Fig. 2-3) these tassels have their central spike transformed into a terminal, many rowed ear with a flexible rachis, while possessing at the same time the lateral ear. Thus no explanation is given of the origin of the corn ear, which is the main feature of cultivated corn (BRIEGER, 1943). The second part of the hypothesis referring to the origin of Euchlaena from corn, inverting thus ASCHERSON's theory, cannot be accepted for several reasons, stated in some detail. The data at hand justify only the conclusion that both genera, Euchlaena and Zea, are related, and there is as little proof for considering the former as ancestor of the latter as there is for the new inverse theory. 5) The analysis of indigenous corn, which will be published in detail by BRIEGER and CUTLER, showed several very primitive characters, but no type was found which was in all characters sufficiently primitive. A genetical analysis of Paulista Pod Corn showed that it contains the same gene as other tunicates, in the IV chromosome, the segregation being complicated by a new gametophyte factor Ga3. The full results of this analysis shall be published elsewhere. (BRIEGER). Selection experiments with Paulista Pod Corn showed that no approximation to a wild ancestor may be obtained when limiting the studies to pure corn. Thus it seemed necessary to substitute "domesticated" by "wild type" modifiers, and the only means for achieving this substitution are hybridizations with Euchlaena. These hybrids have now been analysed init fourth generation, including backcrosses, and, again, the full data will be published elsewhere, by BRIEGER and ADDISON. In one present publication three forms obtained will be described only, which represent an approximation to wild type corn. 6) Before entering howewer into detail, some arguments against ST. HILAIRE's theory must be mentioned. The premendelian argument, referring to the instability of this character, is explained by the fact that all fertile pod corn plants are heterozygous for the dominant Tu factor. But the sterility of the homozygous TuTu, which phenotypically cannot be identified, is still unexplained. The most important argument against the acceptance of the Tunicata faetor as wild type relic gene was removed recently by CUTLER (not yet published) who showed that this type has been preserved for centuries by the Bolivian indians as a mystical "medicine". 7) The main botanical requirements for transforming the corn ear into a wild type structure are stated, and alternative solutions given. One series of these characters are found in Tripsacum and Euchlaena : 2 rows on opposite sides of the rachis, protection of the grains by scales, fragility of the rachis. There remains the other alternative : 4 rows, possibly forming double rows of female and male spikelets, protection of kernels by their glumes, separation of grains at their base from the cob which is thin and flexible. 8) Three successive stages in the reconstruction of wild corn, obtained experimentally, are discussed and illustrated, all characterized by the presence of the Tu gene. a) The structure of the Fl hybrids has already been described in 1943. The main features of the Tunicata hybrids (Fig. -8), when compared with non-tunicate hybrids (Fig. 5-6), consist in the absence of scaly protections, the fragility of the rachis and finally the differentiation of the double rows into one male and one female spikelet. As has been pointed out, these characters represent new phenotypic effects of the tunicate factor which do not appear in the presence of pure maize modifiers. b) The next step was observed among the first backcross to teosinte (Fig. 9). As shown in the photography, Fig. 9D, the features are essencially those of the Fl plants, except that the rachis is more teosinte like, with longer internodes, irregular four-row-arrangement and a complete fragility on the nodes. c) In the next generation a completely new type appeared (Fig. 10) which resembles neither corn nor teosinte, mainly in consequence of one character: the rachis is thin and flexible and not fragile, while the grains have an abscission layer at the base, The medium sized, pointed, brownish and hard granis are protected by their well developed corneous glumes. This last form may not yet be the nearest approach to a wild grass, and I shall try in further experiments to introduce other changes such as an increase of fertile flowers per spikelet, the reduction of difference between terminal and lateral inflorescences, etc.. But the nature of the atavistic reversion is alveadwy such that it alters considerably our expectation when looking for a still existing wild ancestor of corn. 9) The next step in our deductions must now consist in an reversion of our question. We must now explain how we may obtain domesticated corn, starting from a hypothetical wild plant, similar to type c. Of the several changes which must have been necessary to attract the attention of the Indians, the following two seem to me the most important: the disappearance of all abscission layers and the reduction of the glumes. This may have been brought about by an accumulation of mutations. But it seems much more probable to assume that some crossing with a tripsacoid grass or even with Tripsacum australe may have been responsible. In such a cross, the two types of abscission layer would be counterbalanced as shown by the Flhybrids of corn, Tripsacum and Euchlaena. Furthermore in later generations a.tu-allele of Tripsacum may become homozygous and substitute the wild tunicate factor of corn. The hypothesis of a hybrid origin of cultivated corn is not completely new, but has been discussed already by HARSHBERGER and COLLINS. Our hypothesis differs from that of MANGELSDORF and REEVES who assume that crosses with Tripsacum are responsible only for some features of Central and North American corn. 10) The following arguments give indirects evidence in support of our hypothesis: a) Several characters have been observed in indigenous corn from the central region of South America, which may be interpreted as "tripsacoid". b) Equally "zeoid" characters seem to be present in Tripsacum australe of central South-America. c) A system of unbalanced factors, combined by the in-tergeneric cross, may be responsible for the sterility of the wild type tunicata factor when homozygous, a result of the action of modifiers, brought in from Tripsacum together with the tuallele. d) The hybrid theory may explain satisfactorily the presence of so many lethals and semilethals, responsible for the phenomenon of inbreeding in cultivated corn. It must be emphasized that corn does not possess any efficient mechanism to prevent crossing and which could explain the accumulation of these mutants during the evolutionary process. Teosinte which'has about the same mechanism of sexual reproduction has not accumulated such genes, nor self-sterile plants in spite of their pronounced preference for crossing. 11) The second most important step in domestication must have consisted in transforming a four rowed ear into an ear with many rows. The fusion theory, recently revived byLANGHAM is rejected. What happened evidently, just as in succulent pXants (Cactus) or in cones os Gymnosperms, is that there has been a change in phyllotaxy and a symmetry of longitudinal rows superimposed on the original spiral arrangement. 12) The geographical distribution of indigenous corn in South America has been discussed. So far, we may distinguish three zones. The most primitive corn appears in the central lowlands of what I call the Central Triangle of South America: east of the Andies, south of the Amazone-Basin, Northwest of a line formed by the rivers São Prancisco-Paraná and including the Paraguay-Basin. The uniformity of the types found in this extremely large zone is astonishing (BRIEGER and CUTLER). To the west, there is the well known Andian region, characterized by a large number of extremely diverse types from small pop corn to large Cuszco, from soft starch to modified sweet corn, from large cylindrical ears to small round ears, etc.. The third region extends along the atlantic coast in the east, from the Caribean Sea to the Argentine, and is characterized by Cateto, an orange hard flint corn. The Andean types must have been obtained very early, and undoubtedly are the result of the intense Inca agriculture. The Cateto type may be obtained easily by crosses, for instance, of "São Paulo Pointed Pop" to some orange soft corn of the central region. The relation of these three South American zones to Central and North America are not discussed, and it seems essential first to study the intermediate region of Ecuador, Colombia and Venezuela. The geograprical distribution of chromosome knobs is rapidly discussed; but it seems that no conclusions can be drawn before a large number of Tripsacum species has been analysed.
Resumo:
Anopheles aquasalis larvae are salt water tolerant, preferring concentrations between 10 and 20 parts per thousand (ppt). The larvicidal efficacy of two formulations of Bacillus thuringiensis var. israelensis (Vectobac-12AS® and Bactivec®), was investigated against An. aquasalis at salinities of 0, 10, and 20 ppt. A probit analysis was used to calculate the lethal concentrations (LC50 and LC95) for each product at each salinity. The LC50 and LC95 were higher for Bactivec® than Vectobac-12AS®, and for Bactivec®, the LC50 and LC95 increased with salinity. Vectobac-12AS® should thus be preferred to Bactivec® for An. aquasalis control, especially in saline breeding habitats.
Resumo:
Nove espécies são transferidas de Portanus Ball, 1932 para Paraportanus gen. nov.: Paraportanus longicornis (Osborn, 1923) comb. nov. = Portanus chelatus DeLong, 1976 syn. nov.; Paraportanus elegans (Kramer, 1961) comb. nov.; Paraportanus facetus (Kramer, 1961) comb. nov.; Paraportanus eburatus (Kamer, 1964) comb. nov.; Paraportanus filamentus (DeLong, 1980) comb. nov.; Paraportanus bicornis (Carvalho & Cavichioli, 2003) comb. nov.; Paraportanus bimaculatus (Carvalho & Cavichioli, 2003) comb. nov.; Paraportanus cinctus (Carvalho & Cavichioli, 2003) comb. nov.; Paraportanus variatus (Carvalho & Cavichioli, 2003) comb. nov.. Novos dados de distribuição geográfica são registrados para: P. facetus; P. elegans e P. longicornis. Chave para identificação das espécies é apresentada.