6 resultados para Organic domain, grain crushing
em Scielo Saúde Pública - SP
Resumo:
No-tillage systems, associated to black oat as preceding cover crop, have been increasingly adopted. This has motivated anticipated maize nitrogen fertilization, transferring it from the side-dress system at the stage when plants have five to six expanded leaves to when the preceding cover crop is eliminated or to maize sowing. This study was conducted to evaluate the effects of soil tillage system and timing of N fertilization on maize grain yield and agronomic efficiency of N applied to a soil with high organic matter content. A three-year field experiment was conducted in Lages, state of Santa Catarina, from 1999 onwards. Treatments were set up in a split plot arrangement. Two soil tillage systems were tested in the main plots: conventional tillage (CT) and no-tillage (NT). Six N management systems were assessed in the split-plots: S1 - control, without N application; S2 - all N (100 kg ha-1) applied at oat desiccation; S3 - all N applied at maize sowing; S4 - all N side-dressed when maize had five expanded leaves (V5 growth stage); S5 - 1/3 of N rate applied at maize sowing and 2/3 at V5; S6 - 2/3 of nitrogen rate applied at maize sowing and 1/3 at V5. Maize response to the time and form of splitting N was not affected by the soil tillage system. Grain yield ranged from 6.0 to 11.8 t ha-1. The anticipation of N application (S2 and S3) decreased grain yield in two of three years. In the rainiest early spring season (2000/2001) of the experiment, S4 promoted an yield advantage of 2.2 t ha-1 over S2 and S3. Application of total N rate before or at sowing decreased the number of kernels produced per ear in 2000/2001 and 2001/2002 and the number of ears produced per area in 2001/2002, resulting in reduced grain yield. The agronomic efficiency of applied N (kg grain increase/kg of N applied) ranged from 13.9 to 38.8 and was always higher in the S4 than in the S2 and S3 N systems. Short-term N immobilization did not reduce grain yield when no N was applied before or at maize sowing in a soil with high organic matter content, regardless of the soil tillage system.
Resumo:
Biological N2 fixation is a major factor contributing to the increased competitiveness of Brazilian soybeans on the international market. However, the contribution of this process may be limited by adverse conditions to symbiotic bacteria, such as fungicide seed treatments. This study aimed to evaluate the effects of the fungicides carbendazim + thiram and carboxin + thiram on soybean nodulation, plant growth and grain yield. Two field experiments were carried out in the Cerrado region of the State of Roraima, in a soil with a low organic matter content and no soybean bradyrhizobia. In 2005, seeds were treated with fungicide carbendazim + thiram and commercial inoculants containing the Bradyrhizobium elkanii strains SEMIA 5019 and SEMIA 587 and B. japonicum strains SEMIA 5079 and SEMIA 5080. In 2006, soybean seeds were treated with the fungicides carbendazim + thiram or carboxin + thiram and inoculated separately with each one of the four strains. The plants were evaluated for number of nodules and dry weight, shoot dry weight and total N accumulated in shoots 35 days after plant emergence, while grain yield and N grain content were determined at harvest. Both fungicides reduced soybean nodulation, especially in the presence of B. elkanii strains. The fungicide carbendazim + thiram reduced nodulation by about 50 % and grain yield by more than 20 % (about 700 kg ha-1), in the treatment inoculated with of strain SEMIA 587.
Resumo:
It is well-known nowadays that soil variability can influence crop yields. Therefore, to determine specific areas of soil management, we studied the Pearson and spatial correlations of rice grain yield with organic matter content and pH of an Oxisol (Typic Acrustox) under no- tillage, in the 2009/10 growing season, in Selvíria, State of Mato Grosso do Sul, in the Brazilian Cerrado (longitude 51º24' 21'' W, latitude 20º20' 56'' S). The upland rice cultivar IAC 202 was used as test plant. A geostatistical grid was installed for soil and plant data collection, with 120 sampling points in an area of 3.0 ha with a homogeneous slope of 0.055 m m-1. The properties rice grain yield and organic matter content, pH and potential acidity and aluminum content were analyzed in the 0-0.10 and 0.10-0.20 m soil layers. Spatially, two specific areas of agricultural land management were discriminated, differing in the value of organic matter and rice grain yield, respectively with fertilization at variable rates in the second zone, a substantial increase in agricultural productivity can be obtained. The organic matter content was confirmed as a good indicator of soil quality, when spatially correlated with rice grain yield.
Resumo:
Animal manure is applied to the soil as a nutrient source, especially of nitrogen, to plants. However, manure application rates can be reduced with the use of N fertilizer in topdressing. The aim of this study was to evaluate crop responses to different application rates of animal manure sources, used alone and supplemented with mineral N topdressing, in a no-tillage system. The study was carried out from 2005 to 2008 on a Hapludalf soil. The treatments consisted of rates of 10, 20 and 30 m³ ha-1 of pig slurry (PS), and of 1 and 2 t ha-1 of turkey manure (TM), applied alone and supplemented with topdressed N fertilizer (TNF), as well as two controls, mineral fertilization (NPK) and one control without fertilizer application. Grain yield in common bean and maize, and dry matter yield and nutrient accumulation in common bean, maize and black oat crops were evaluated. Nitrogen application in topdressing in maize and common bean, especially when PS was used at rates of 20 and 30 m³ ha-1, and TM, at 2 t ha-1, proved effective in increasing the crop grain yields, showing the viability of the combined use of organic and industrialized mineral sources. Nitrogen accumulation in maize and common bean tissues was the indicator most strongly related to grain yield, in contrast with the apparent nutrient recovery, which was not related to the N, P and K quantities applied in the organic sources. No clear residual effect of N topdressing of maize and common bean was observed on the dry matter yield of black oat grown in succession to the main crops with PS and TM applications.
Resumo:
The objective of this work was to evaluate the effect of winter land use on the amount of residual straw, the physical soil properties and grain yields of maize, common bean and soybean summer crops cultivated in succession. The experiment was carried out in the North Plateau of Santa Catarina state, Brazil, from May 2006 to April 2010. Five strategies of land use in winter were evaluated: intercropping with black oat + ryegrass + vetch, without grazing and nitrogen (N) fertilization (intercropping cover); the same intercropping, with grazing and 100 kg ha-1 of N per year topdressing (pasture with N); the same intercropping, with grazing and without nitrogen fertilization (pasture without N); oilseed radish, without grazing and nitrogen fertilization (oilseed radish); and natural vegetation, without grazing and nitrogen fertilization (fallow). Intercropping cover produces a greater amount of biomass in the system and, consequently, a greater accumulation of total and particulate organic carbon on the surface soil layer. However, land use in winter does not significantly affect soil physical properties related to soil compaction, nor the grain yield of maize, soybean and common bean cultivated in succession.
Resumo:
The aim of this study was to quantify the water consumption and the crop coefficients (Kc) for the potato (Solanum tuberosum L.), in Seropédica, Rio de Janeiro (RJ), Brazil, under organic management, and to simulate the crop evapotranspiration (ETc) using the Kc obtained in the field and the ones recommended by the Food and Agriculture Organization (FAO). The water consumption was obtained through soil water balance, using TDR probes installed at 0.15m and 0.30m deep. At the different stages of development, the Kc was determined by the ratio of ETc and reference evapotranspiration, obtained by Penman-Monteith FAO 56. The crop coefficients obtained were 0.35, 0.45, 1.29 and 0.63. The accumulated ETc obtained in the field was 109.6 mm, while the ETc accumulated from FAO's Kc were 142.2 and 138mm, respectively, considering the classical values and the values adjusted to the local climatic conditions. The simulation of water consumption based on meteorological data of historical series from 1961 to 2007 provided higher value of ETc when compared with the one obtained in the field. From the meteorological data of historical series, it was observed that the use of Kc recommended by FAO may overestimate the amount of irrigation water by 9%, over the same growing season.