182 resultados para Orange Oil
em Scielo Saúde Pública - SP
Resumo:
Starch derivatives of taro (Colocasia esculenta L. Schott) and rice were characterized as wall materials of orange oil (d-limonene) by spray drying. Native starches were initially hydrolyzed with HCl and then esterified. Succinylated starches were modified using a conventional method in a slurry and were extruded; whereas, the phosphorylated starches were modified using the extrusion process. Viscosity and solubility of starches reduced after acid hydrolysis, derivatization, and extrusion. The particle size of the wall materials ranged between 20.05 and 31.81 µm. The encapsulation efficiency of the phosphorylated taro, rice, and waxy corn starches was 96.9, 96.8 and 97.1% respectively, and 98.6, 98.1, and 98.8% for succynilated taro, rice, and waxy corn starches, respectively. Starch derivatives of taro and rice could potentially be used as wall materials of orange oil d-limonene.
Resumo:
The objective of this work was to use the high-pressure homogenizer (HPH) to prepare stable oil/water nanoemulsions presenting narrow particle size distribution. The dispersions were prepared using nonionic surfactants based on ethoxylated ether. The size and distribution of the droplets formed, along with their stability, were determined in a Zetasizer Nano ZS particle size analyzer. The stability and the droplet size distribution in these systems do not present the significant differences with the increase of the processing pressure in the HPH). The processing time can promote the biggest dispersion in the size of particles, thus reducing its stability.
Resumo:
Orange seeds are a promising agroindustry-waste which can be implemented in the extraction and production of vegetable oil. The relationship between moisture content and water activity provides useful information for the processing and storage of this waste item. The aim of this study was to determine the mechanism of water sorption enthalpy-entropy of orange seeds (C. sinensis cv. Brazilians) according to the moisture content. Therefore, desorption isotherms were determined at five different temperature (30, 40, 50, 60, and 70 ºC) under a wide range of moisture content (0.005-0.057 kg kg-1 d.b.) and water activity (0.02-0.756). Theoretical and empirical models were used for modeling the desorption isotherms. An analytical solution of the Clausius-Clapeyron equation was proposed to compute the isosteric heat of sorption, the differential entropy, and Gibbs free energy using the Oswin model when the effect of temperature on the hygroscopic equilibrium was considered.
Resumo:
This work describes a method to predict the solubility of essential oils in supercritical carbon dioxide. The method is based on the formulation proposed in 1979 by Asselineau, Bogdanic and Vidal. The Peng-Robinson and Soave-Redlich-Kwong cubic equations of state were used with the van der Waals mixing rules with two interaction parameters. Method validation was accomplished calculating orange essential oil solubility in pressurized carbon dioxide. The solubility of orange essential oil in carbon dioxide calculated at 308.15 K for pressures of 50 to 70 bar varied from 1.7± 0.1 to 3.6± 0.1 mg/g. For same the range of conditions, experimental solubility varied from 1.7± 0.1 to 3.6± 0.1 mg/g. Predicted values were not very sensitive to initial oil composition.
Resumo:
This study evaluated the effects on the development and predatory capacity of Podisus nigrispinus fed on Spodoptera frugiperda that have ingested different concentrations of neem oil. The predatory capacity of Podisus nigrispinus was assessed, separating nymphs (fourth instar) and adults (males and females). The treatments consisted of S. frugiperda larvae reared in neem oil aqueous solutions (0.077, 0.359 and 0.599%), deltamethrin EC 25 (0.100%) and control arranged in a completely randomized design, with ten replicates. Insects were offered three larval densities (one, three and six), in the third or fourth instars. The predated larvae were examined at 24 and 48 hours after the beginning of the experiment. Biological parameters of Podisus nigrispinus were evaluated in groups of ten second-instar nymphs transferred to pots, in five replicates. Insects were offered 2-6 third and/or fourth-instar larvae reared in the same neem oil concentrations in a completely randomized design. The following parameters were evaluated: duration of each nymph stage (days), nymph mortality (%), weight of fifth-instar nymphs (mg), sex ratio, weight of males and females (mg) and longevity of unfed adults (days). The predatory capacity of nymphs and adults of Podisus nigrispinus was influenced by the neem oil at the concentrations of 0.359% and 0.599% in the highest density. The concentration of 0.359% lengthened the nymphal stage and the concentration of 0.599% reduced the weight of males.
Resumo:
DEET (N,N-diethyl-3-methylbenzamide) is nowadays the most effective mosquito repellent available, however, its use can present some topical and systemic side effects. Some botanical compositions, as Andiroba (Carapa guianensis), have been proved repellent properties at low cost and toxicity. An experimental study was driven involving four volunteers submitting their forearms covered with Andiroba oil at 100%, DEET 50%, refined soy oil, Andiroba oil 15% and in the absence of products, directly to healthy females of Aedes sp. The times of first and third bites were checked. The results showed that the median of the first bite without any product was 17.5s and the third bite, 40.0s. In the soy oil, the bites happened in 60.0s and 101.5s, in the presence of Andiroba oil 100%, in 56.0s and 142.5s and in Andiroba oil 15%, in 63.0s and 97.5s. The volunteers using DEET 50% had not received bites after 3600s in most of the experiments (p < 0.001 Wilcoxon). Pure Andiroba oil compared to the soy oil, forearm without product and Andiroba oil 15%, showed discreet superiority (p < 0.001 Wilcoxon). Our conclusion is that this study demonstrated that the pure Andiroba oil presents discreet repellent effect against bite of Aedes sp., being significantly inferior to DEET 50%.
Resumo:
The ultrastructural superficial changes in third instar house fly (Musca domestica) and blow fly (Chrysomya megacephala) induced by eucalyptol oil were observed using scanning electron microscopy. Dipped in 0.902 g/ml eucalyptol for 30 sec, the larvae integument of both species showed significant aberrant appearance of the body surface, particularly swelling integument, bleb formation, partial breach and deformation of spines.
Resumo:
To date, there are no vaccines against Leishmania, and chemotherapy remains the mainstay for the control of leishmaniasis. The drugs of choice used for leishmaniasis therapy are significantly toxic, expensive and with a growing frequency of refractory infections. Because of these limitations, a combination therapy is the better hope. This work demonstrates that the essential oil from Chenopodium ambrosioides shows a synergic activity after incubation in conjunction with pentamidine against promastigotes of Leishmania amazonensis. However, an indifferent effect has been found for combinations of meglumine antimoniate or amphotericin B and the essential oil.
Resumo:
Introduction: The essential oil Mentha x villosa (MVEO) has a wide range of actions, including antibacterial, antifungal, antiprotozoal and schistosomicidal actions. The present study aimed to investigate the ultrastructural changes of MVEO on the tegument of adult Schistosoma mansoni. Materials and Methods: Different concentrations of MVEO were tested on S. mansoni adult worms in vitro. Ultrastructural changes on the tegument of these adult worms were evaluated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results: The MVEO caused the death of all worms at 500 μg mL-1 after 24 h. After 24h of 500 μg mL-1 MVEO treatment, bubble lesions were observed over the entire body of worms and they presented loss of tubercles in some regions of the ventral portion. In the evaluation by TEM, S. mansoni adult worms treated with MVEO, 500 μg mL-1, presented changes in the tegument and vacuoles in the syncytial matrix region. Glycogen granules close to the muscle fibers were visible. Conclusion: The ability of MVEO to cause extensive ultrastructural damage to S. mansoni adult worms correlates with its schistosomicidal effects and confirms earlier findings with S. mansoni.
Resumo:
Oil-resin fractions from Copaifera reticulata Ducke (Leguminosae-Caesalpinoideae) were evaluated for larvicidal activity on third larval instars of Aedes aegypti, in searching for alternative control methods for this mosquito. The bioactive fractions were chemically monitored by thin-layer chromatography, ¹H and 13C nuclear magnetic resonance and mass spectrometry. Bioassays were performed using five repetitions, at a temperature of 28 ± 1°C, relative humidity of 80 ± 5% and light and dark cycles of 12h. Mortality was indicated by darkening of the cephalic capsule after 24h of exposure of the larvae to the solutions. The most active fractions were CRM1-4 (sesquiterpenes) and CRM5-7 (labdane diterpenes), which showed LC50 values of 0.2 and 0.8ppm, respectively.
Resumo:
Introduction The aim of this study was to investigate the effects of Rosmarinus officinalis essential oil on germ tube formation by Candida albicans isolated from denture wearers. Methods Ten C. albicans isolates recovered from denture wearers were tested using 10% fetal bovine serum with or without 4% R. officinalis essential oil. Results The essential oil from R. officinalis completely inhibited germ tube formation in the investigated C. albicans isolates. Conclusions The results demonstrate that the essential oil of R. officinalis modulates C. albicans pathogenicity through its primary virulence factor (i.e., germ tube formation was suppressed).
Resumo:
ABSTRACT INTRODUCTION: In this study, we evaluated the chemical composition of a commercial sample of essential oil from Eucalyptus smithii R.T. Baker and its antifungal activity against Microsporum canis ATCC 32903, Microsporum gypseum ATCC 14683, Trichophyton mentagrophytes ATCC 9533, T. mentagrophytes ATCC 11480, T. mentagrophytes ATCC 11481, and Trichophyton rubrum CCT 5507. METHODS: Morphological changes in these fungi after treatment with the oil were determined by scanning electron microscopy (SEM). The antifungal activity of the oil was determined on the basis of minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values. RESULTS: The compound 1,8-cineole was found to be the predominant component (72.2%) of the essential oil. The MIC values of the oil ranged from 62.5μg·mL−1 to >1,000μg·mL−1, and the MFC values of the oil ranged from 125μg·mL−1 to >1,000μg·mL−1. SEM analysis showed physical damage and morphological alterations in the fungi exposed to this oil. CONCLUSIONS: We demonstrated the potential of Eucalyptus smithii essential oil as a natural therapeutic agent for the treatment of dermatophytosis.
Resumo:
Abstract INTRODUCTION: The aim of this study was to determine whether an herbal extract containing monoterpene exhibited activity against multidrug-resistant Staphylococcus aureus and Pseudomonas aeruginosa isolated from clinical infection samples. METHODS: The essential oil of Trachyspermum ammi (L.) Sprague ex Turrill (Apiaceae) fruit was extracted by hydrodistillation. Fruit residues were treated with hydrochloric acid and re-hydrodistilled to obtain volatile compounds. Compounds in the distilled oil were identified using gas-chromatography (GC) and GC-mass spectrometry (MS). The antibiotic susceptibility of all bacterial isolates was analyzed using both the disc diffusion method and determination of the minimum inhibitory concentration (MIC). The sensitivity of antibiotic-resistant isolates to essential oil was also determined by using the disc diffusion method and MIC determination. RESULTS: Of 26 clinical isolates, 92% were multidrug-resistant (MDR). Aromatic monoterpenes (thymol, paracymene, and gamma-terpinene) were the major (90%) components of the oil. Growth of S. aureus strains was successfully inhibited by the oil, with an inhibitory zone diameter (IZD) between 30-60mm and MIC <0.02μL/mL. The oil had no antimicrobial activity against clinical isolates of P. aeruginosa; rather, it prevented pigment production in these isolates. CONCLUSIONS: This study revealed that the essential oil of Trachyspermum ammi, which contains monoterpene, has good antibacterial potency. Monoterpenes could thus be incorporated into antimicrobial ointment formulas in order to treat highly drug-resistant S. aureus infections. Our findings also underscore the utility of research on natural products in order to combat bacterial multidrug resistance.
Resumo:
The major constituents of the leaf essential oil of P. unifoliolatumare trans-caryophyllene (37.45%), limonene (24.23%) and α-humulene (9.94%).