6 resultados para Optimal control
em Scielo Saúde Pública - SP
Resumo:
In recent years the analysis and synthesis of (mechanical) control systems in descriptor form has been established. This general description of dynamical systems is important for many applications in mechanics and mechatronics, in electrical and electronic engineering, and in chemical engineering as well. This contribution deals with linear mechanical descriptor systems and its control design with respect to a quadratic performance criterion. Here, the notion of properness plays an important role whether the standard Riccati approach can be applied as usual or not. Properness and non-properness distinguish between the cases if the descriptor system is exclusively governed by the control input or by its higher-order time-derivatives additionally. In the unusual case of non-proper systems a quite different problem of optimal control design has to be considered. Both cases will be solved completely.
Resumo:
This paper studies the effect of time delay on the active non-linear control of dynamically loaded flexible structures. The behavior of non-linear systems under state feedback control, considering a fixed time delay for the control force, is investigated. A control method based on non-linear optimal control, using a tensorial formulation and state feedback control is used. The state equations and the control forces are expressed in polynomial form and a performance index, quadratic in both state vector and control forces, is used. General polynomial representations of the non-linear control law are obtained and implemented for control algorithms up to the fifth order. This methodology is applied to systems with quadratic and cubic non-linearities. Strongly non-linear systems are tested and the effectiveness of the control system including a delay for the application of control forces is discussed. Numerical results indicate that the adopted control algorithm can be efficient for non-linear systems, chiefly in the presence of strong non-linearities but increasing time delay reduces the efficiency of the control system. Numerical results emphasize the importance of considering time delay in the project of active structural control systems.
Resumo:
Existing studies on global sourcing strategy have implicitly adopted a cJosed-systems perspective in which sourcing activities are managed within a multinational company across national boundaries. Produd and process innovations and components procurement that are jointly managed by a consortium of cooperating firms have not been examined. In this paper, we empiricallyexamine the issues concerning sourcing partnerships in an open-systems perspective. Findings suggest that even in a sourcing partnership arrangement with a foreign supplier, the principal firm's ability to procure and control the supply of major components has a positive bearing on its market performance.
Resumo:
This paper reviews three different approaches to modelling the cost-effectiveness of schistosomiasis control. Although these approaches vary in their assessment of costs, the major focus of the paper is on the evaluation of effectiveness. The first model presented is a static economic model which assesses effectiveness in terms of the proportion of cases cured. This model is important in highlighting that the optimal choice of chemotherapy regime depends critically on the level of budget constraint, the unit costs of screening and treatment, the rates of compliance with screening and chemotherapy and the prevalence of infection. The limitations of this approach is that it models the cost-effectiveness of only one cycle of treatment, and effectiveness reflects only the immediate impact of treatment. The second model presented is a prevalence-based dynamic model which links prevalence rates from one year to the next, and assesses effectiveness as the proportion of cases prevented. This model was important as it introduced the concept of measuring the long-term impact of control by using a transmission model which can assess reduction in infection through time, but is limited to assessing the impact only on the prevalence of infection. The third approach presented is a theoretical framework which describes the dynamic relationships between infection and morbidity, and which assesses effectiveness in terms of case-years prevented of infection and morbidity. The use of this model in assessing the cost-effectiveness of age-targeted treatment in controlling Schistosoma mansoni is explored in detail, with respect to varying frequencies of treatment and the interaction between drug price and drug efficacy.
Resumo:
Urinary schistosomiasis remains a significant burden for Africa and the Middle East. The success of population-based control programs will depend on their impact, over many years, on Schistosoma haematobium reinfection and associated disease. In a multi-year (1984-1992) control program in Kenya, we examined risk for S. haematobium reinfection and late disease during and after annual school-based treatment. In this setting, long-term risk of new infection was independently associated with location, age, hematuria, and incomplete treatment, but not with sex or frequency of water contact. Thus, very local environmental features and age-related factors played an important role in S. haematobium transmission, such that population-based control programs should optimally tailor their efforts to local conditions on a village-by-village basis. In 2001-2002, the late benefits of earlier participation in school-based antischistosomal therapy were estimated in a cohort of formerly-treated adult residents compared to never-treated adults from the same villages. Among age-matched subjects, current infection prevalence was lower among those who had received remote therapy. In addition, prevalence of bladder abnormality was lower in the treated group, who were free of severe bladder disease. Treatment of affected adults resulted in rapid resolution of infection and any detectable bladder abnormalities. We conclude that continued treatment into adulthood, as well as efforts at long-term prevention of infection (transmission control) are necessary to achieve optimal morbidity control in affected communities.
Resumo:
The objectives of this study were to evaluate baby corn yield, green corn yield, and grain yield in corn cultivar BM 3061, with weed control achieved via a combination of hoeing and intercropping with gliricidia, and determine how sample size influences weed growth evaluation accuracy. A randomized block design with ten replicates was used. The cultivar was submitted to the following treatments: A = hoeings at 20 and 40 days after corn sowing (DACS), B = hoeing at 20 DACS + gliricidia sowing after hoeing, C = gliricidia sowing together with corn sowing + hoeing at 40 DACS, D = gliricidia sowing together with corn sowing, and E = no hoeing. Gliricidia was sown at a density of 30 viable seeds m-2. After harvesting the mature ears, the area of each plot was divided into eight sampling units measuring 1.2 m² each to evaluate weed growth (above-ground dry biomass). Treatment A provided the highest baby corn, green corn, and grain yields. Treatment B did not differ from treatment A with respect to the yield values for the three products, and was equivalent to treatment C for green corn yield, but was superior to C with regard to baby corn weight and grain yield. Treatments D and E provided similar yields and were inferior to the other treatments. Therefore, treatment B is a promising one. The relation between coefficient of experimental variation (CV) and sample size (S) to evaluate growth of the above-ground part of the weeds was given by the equation CV = 37.57 S-0.15, i.e., CV decreased as S increased. The optimal sample size indicated by this equation was 4.3 m².