33 resultados para Oligonucleotides, Antisense
em Scielo Saúde Pública - SP
Resumo:
We investigated the participation of neuropeptide Y-Y1 receptors within the medial preoptic area in luteinizing hormone, follicle-stimulating hormone and prolactin release. Four bilateral microinjections of sense (control) or antisense 18-base oligonucleotides of messenger ribonucleic acid (mRNA) (250 ng) corresponding to the NH2-terminus of the neuropeptide Y1 receptor were performed at 12-h intervals for two days into the medial preoptic area of ovariectomized Wistar rats (N = 16), weighing 180 to 200 g, treated with estrogen (50 µg) and progesterone (25 mg) two days before the experiments between 8.00 and 10:00 a.m. Blockade of Y1 receptor synthesis in the medial preoptic area by the antisense mRNA did not change plasma luteinizing hormone or follicle-stimulating hormone but did increase prolactin from 19.6 ± 5.9 ng/ml in the sense group to 52.9 ± 9.6 ng/ml in the antisense group. The plasma hormones were measured by radioimmunoassay and the values are reported as mean ± SEM. These data suggest that endogenous neuropeptide Y in the medial preoptic area has an inhibitory action on prolactin secretion through Y1 receptors.
Resumo:
Oligonucleotides have a wide range of applications in fields such as biotechnology, molecular biology, diagnosis and therapy. However, the spectrum of uses can be broadened by introducing chemical modifications into their structures. The most prolific field in the search for new oligonucleotide analogs is the antisense strategy, where chemical modifications confer appropriate characteristics such as hybridization, resistance to nucleases, cellular uptake, selectivity and, basically, good pharmacokinetic and pharmacodynamic properties. Combinatorial technology is another research area where oligonucleotides and their analogs are extensively employed. Aptamers, new catalytic ribozymes and deoxyribozymes are RNA or DNA molecules individualized from a randomly synthesized library on the basis of a particular property. They are identified by repeated cycles of selection and amplification, using PCR technologies. Modified nucleotides can be introduced either during the amplification procedure or after selection.
Resumo:
Eosinophils, along with mast cells are key cells involved in the innate immune response against parasitic infection whereas the adaptive immune response is largely dependent on lymphocytes. In chronic parasitic disease and in chronic allergic disease, IL-5 is predominantly a T cell derived cytokine which is particularly important for the terminal differentiation, activation and survival of committed eosinophil precursors. The human IL-5 gene is located on chromosome 5 in a gene cluster that contains the evolutionary related IL-4 family of cytokine genes. The human IL-5 receptor complex is a heterodimer consisting of a unique a subunit (predominantly expressed on eosinophils) and a beta subunit which is shared between the receptors for IL-3 & GM-CSF (more widely expressed). The a subunit is required for ligand-specific binding whereas association with the beta subunit results in increased binding affinity. The alternative splicing of the alphaIL-5R gene which contains 14 exons can yield several alphaIL-5R isoforms including a membrane-anchored isoform (alphaIL-5Rm) and a soluble isoform (alphaIL-5Rs). Cytokines such as IL-5 produce specific and non-specific cellular responses through specific cell membrane receptor mediated activation of intracellular signal transduction pathways which, to a large part, regulate gene expression. The major intracellular signal transduction mechanism is activation of non-receptor associated tyrosine kinases including JAK and MAP kinases which can then transduce signals via a novel family of transcriptional factors named signal transducers and activators of transcription (STATS). JAK2, STAT1 and STAT 5 appear to be particularly important in IL-5 mediated eosinophil responses. Asthma is characterized by episodic airways obstruction, increased bronchial responsiveness, and airway inflammation. Several studies have shown an association between the number of activated T cells and eosinophils in the airways and abnormalities in FEV1, airway reactivity and clinical severity in asthma. It has now been well documented that IL-5 is highly expressed in the bronchial mucosa of atopic and intrinsic asthmatics and that the increased IL-5 mRNA present in airway tissues is predominantly T cell derived. Immunocytochemical staining of bronchial biopsy sections has confirmed that IL-5 mRNA transcripts are translated into protein in asthmatic subjects. Furthermore, the number of activated CD 4 + T cells and IL-5 mRNA positive cells are increased in asthmatic airways following antigen challenge and studies that have examined IL-5 expression in asthmatic subjects before and after steroids have shown significantly decreased expression following oral corticosteroid treatment in steroid-sensitive asthma but not in steroid resistant and chronic severe steroid dependent asthma. The link between T cell derived IL-5 and eosinophil activation in asthmatic airways is further strengthened by the demonstration that there is an increased number of alphaIL-5R mRNA positive cells in the bronchial biopsies of atopic and non-atopic asthmatic subjects and that the eosinophil is the predominant site of this increased alphaIL-5R mRNA expression. We have also shown that the subset of activated eosinophils that expressed mRNA for membrane bound alpha IL5r inversely correlated with FEV1, whereas the subset of activated eosinophils that expressed mRNA for soluble alphaIL5r directly correlated with FEV1. Hence, not only does this data suggest that the presence of eosinophils expressing alphaIL-5R mRNA contribute towards the pathogenesis of bronchial asthma, but also that the eosinophil phenotype with respect to alphaIL-5R isoform expression is of central importance. Finally, there are several animal, and more recently in vitro lung explant, models of allergen induced eosinophilia, late airway responses(LARS), and bronchial hyperresponsiveness(BHR) - all of which support a link between IL-5 and airway eosinophila and bronchial hyperresponsiveness. The most direct demonstration of T cell involvement in LARS is the finding that these physiological responses can be transferred by CD4+ but not CD8+ T cells in rats. The importance of IL-5 in animal models of allergen induced bronchial hyperresponsiveness has been further demonstrated by a number of studies which have indicated that IL-5 administration is able to induce late phase responses and BHR and that anti-IL-5 antibody can block allergen induced late phase responses and BHR. In summary, activated T lymphocytes, IL5 production and eosinophil activation are particularly important in the asthmatic response. Human studies in asthma and studies in allergic animal models have clearly emphasised the unique role of IL-5 in linking T lymphocytes and adaptive immunity, the eosinophil effector cell, and the asthma phenotype. The central role of activated lymphocytes and eosinophils in asthma would argue for the likely therapeutic success of strategies to block T cell and eosinophil activation (eg steroids). Importantly, more targeted therapies may avoid the complications associated with steroids. Such therapies could target key T cell activation proteins and cytokines by various means including blocking antibodies (eg anti-CD4, anti-CD40, anti-IL-5 etc), antisense oligonucleotides to their specific mRNAs, and/or selective inhibition of the promoter sites for these genes. Another option would be to target key eosinophil activation mechanisms including the aIL5r. As always, the risk to benefit ratio of such strategies await the results of well conducted clinical trials.
Resumo:
One old dream of the chemist in the field of the drug research is to create molecules capable of reaching their target with the precision of a missile. To accomplish it these molecules must have the propriety of distinguishing qualitative differences between healthy and diseased cells. A therapy based on this principle, able of eradicating specifically defective cells, or cells affected by a pathogen has an enormous advantage with the regard to the classical approach in which the cytotoxic drugs merely exploit quantitative biochemical and kinetic differences between abnormal and normal cells. We present in this article a review on the chemical synthesis of analogues of desoxyribonucleotides and on results obtained on the specific and irreversible inhibition of undesired genetic expression using the antisense principle.
Resumo:
The biological functions of the BC047440 gene highly expressed by hepatocellular carcinoma (HCC) are unknown. The objective of this study was to reconstruct antisense eukaryotic expression vectors of the gene for inhibiting HepG2 cell proliferation and suppressing their xenograft tumorigenicity. The full-length BC047440 cDNA was cloned from human primary HCC by RT-PCR. BC047440 gene fragments were ligated with pMD18-T simple vectors and subsequent pcDNA3.1(+) plasmids to construct the recombinant antisense eukaryotic vector pcDNA3.1(+)BC047440AS. The endogenous BC047440 mRNA abundance in target gene-transfected, vector-transfected and naive HepG2 cells was semiquantitatively analyzed by RT-PCR and cell proliferation was measured by the MTT assay. Cell cycle distribution and apoptosis were profiled by flow cytometry. The in vivo xenograft experiment was performed on nude mice to examine the effects of antisense vector on tumorigenicity. BC047440 cDNA fragments were reversely inserted into pcDNA3.1(+) plasmids. The antisense vector significantly reduced the endogenous BC047440 mRNA abundance by 41% in HepG2 cells and inhibited their proliferation in vitro (P < 0.01). More cells were arrested by the antisense vector at the G1 phase in an apoptosis-independent manner (P = 0.014). Additionally, transfection with pcDNA3.1(+)BC047440AS significantly reduced the xenograft tumorigenicity in nude mice. As a novel cell cycle regulator associated with HCC, the BC047440 gene was involved in cell proliferation in vitro and xenograft tumorigenicity in vivo through apoptosis-independent mechanisms.
Resumo:
Infections by Candida species are a high-impact problem in public health due to their wide incidence in hospitalized patients. The goal of this study was to evaluate frequency, susceptibility to antifungals, and genetic polymorphism of Candida species isolated from clinical specimens of hospitalized patients. The Candida isolates included in this study were obtained from blood cultures, abdominal fluids, and central venous catheters (CVC) of hospitalized patients at the Clinical Hospital of the Federal University of Uberlândia during the period of July 2010 - June 2011. Susceptibility tests were conducted by the broth microdilution method. The RAPD-PCR tests used employed initiator oligonucleotides OPA09, OPB11, and OPE06. Of the 63 Candida isolates, 18 (28.5%) were C. albicans, 20 (31.7%) were C. parapsilosis complex species, 14 (22.2%) C. tropicalis, four (6.4%) C. glabrata, four (6.4%) C. krusei, two (3.3%) C. kefyr, and one (1.6%) C. lusitaniae. In vitro resistance to amphotericin B was observed in 12.7% of isolates. In vitroresistance to azoles was not detected, except for C. krusei. The two primers, OPA09 and OPB11, were able to distinguish different species. Isolates of C. albicans and C. parapsilosis complex species presented six and five clusters, respectively, with the OPA09 marker by RAPD-PCR, showing the genetic variability of the isolates of those species. It was concluded that members of the C. parapsilosis complex were the most frequent species found, and most isolates were susceptible to the antifungals amphotericin B, flucozanole, and itraconazole. High genetic polymorphisms were observed for isolates of C. albicans and C. parapsilosis complex species, mainly with the OPA09 marker.
Resumo:
O objetivo deste estudo foi padronizar uma metodologia de extração de DNA de alta qualidade a partir de amostras de sangue coagulado. Quarenta e oito amostras de sangue humano coagulado foram utilizadas para a extração de DNA pelo kit comercial EZ-DNA® (Biological Industries, Beit Haemek, Israel), pelo kit de coluna Neoscience® (One Lambda Inc., San Diego, CA) e pelo método modificado de salting out. Apenas o método de salting out foi capaz de extrair altas concentrações de DNA (média, 180ng/µL), as quais foram medidas pelo detector de fluorescência Qubit® (Invitrogen, USA). Este método permitiu a amplificação dos genes HLA (human leukocyte antigens) pela tecnologia PCR-SSO (polymerase chain reaction - specific sequence of oligonucleotides) Luminex, a qual exige DNA de boa qualidade, e de genes KIR (killer cell immunoglobulin-like receptors) pela técnica made in house PCR-SSP (polymerase chain reaction-sequence specific of primers), a qual demanda uma concentração específica de DNA (10ng/µL). Concluímos que a técnica de salting out modificada foi muito eficiente, simples e rápida para a extração de DNA de amostras de sangue humano coagulado, com o objetivo de realizar a genotipagem de genes HLA e KIR.
Resumo:
The [Delta]F508 mutation in the cystic fibrosis (CF) gene was studied in a population of 18 Brazilian CF patients and their 17 families by use of PCR and differential hybridization with oligonucleotides. In a total of 34 chromosomes considered, 12 (35%) carried the F508 deletion, a frequency much lower than that reported in most other populations. As a consequence, CF in Brazil would be predominantly caused by mutations different from the F508 deletion
Resumo:
The 21kD ookinete antigen of Plasmodium berghei (Pbs 21) has been shown to elicit an effective and long lasting transmission blocking immune response in mice. Having cloned and sequenced this antigen (Paton et al. 1993) the sequence was compared to the genes of the same family previously identified in P. falciparum, P. gallinaceum (Kaslow et al. 1989) and P. reichenowi (Lal et al. 1990). Four conserved areas were identified in this comparison, to which degenerate oligonucleotides were designed. PCR amplification and screening of genomic libraries was then carried out using these oligonucleotides. The P. yoelii gene was successfully cloned and a number of novel P. vivax genes identified but the P. vivax homologue of Pbs21 remains elusive.
Resumo:
Recently, we generated two bacterial recombinant proteins expressing 89 amino acids of the C-terminal domain of the Plasmodium vivax merozoite surface protein-1 and the hexa-histidine tag (His6MSP1(19)). One of these recombinant proteins contained also the amino acid sequence of the universal pan allelic T-cell epitope (His6MSP1(19)-PADRE). In the present study, we evaluated the immunogenic properties of these antigens when administered via the intra-nasal route in the presence of distinct adjuvant formulations. We found that C57BL/6 mice immunized with either recombinant proteins in the presence of the adjuvants cholera toxin (CT) or the Escherichia coli heat labile toxin (LT) developed high and long lasting titers of specific serum antibodies. The induced immune responses reached maximum levels after three immunizing doses with a prevailing IgG1 subclass response. In contrast, mice immunized by intranasal route with His6MSP1(19)-PADRE in the presence of the synthetic oligonucleotides adjuvant CpG ODN 1826 developed lower antibody titers but when combined to CT, CpG addition resulted in enhanced IgG responses characterized by lower IgG1 levels. Considering the limitations of antigens formulations that can be used in humans, mucosal adjuvants can be a reliable alternative for the development of new strategies of immunization using recombinant proteins of P. vivax.
Resumo:
Angiostrongylus cantonensis is an important causative agent of eosinophilic meningitis and eosinophilic meningoencephalitis in humans. MicroRNAs (miRNAs) are small non-coding RNAs that participate in a wide range of biological processes. This study employed a deep-sequencing approach to study miRNAs from young adults of A. cantonensis. Based on 16,880,456 high-quality reads, 252 conserved mature miRNAs including 10 antisense miRNAs that belonging to 90 families, together with 10 antisense miRNAs were identified and characterised. Among these sequences, 53 miRNAs from 25 families displayed 50 or more reads. The conserved miRNA families were divided into four groups according to their phylogenetic distribution and a total of nine families without any members showing homology to other nematodes or adult worms were identified. Stem-loop real-time polymerase chain reaction analysis of aca-miR-1-1 and aca-miR-71-1 demonstrated that their level of expression increased dramatically from infective larvae to young adults and then decreased in adult worms, with the male worms exhibiting significantly higher levels of expression than female worms. These findings provide information related to the regulation of gene expression during the growth, development and pathogenesis of young adults of A. cantonensis.
Resumo:
Developing a fast, inexpensive, and specific test that reflects the mutations present in Mycobacterium tuberculosis isolates according to geographic region is the main challenge for drug-resistant tuberculosis (TB) control. The objective of this study was to develop a molecular platform to make a rapid diagnosis of multidrug-resistant (MDR) and extensively drug-resistant TB based on single nucleotide polymorphism (SNP) mutations present in therpoB, katG, inhA,ahpC, and gyrA genes from Colombian M. tuberculosis isolates. The amplification and sequencing of each target gene was performed. Capture oligonucleotides, which were tested before being used with isolates to assess the performance, were designed for wild type and mutated codons, and the platform was standardised based on the reverse hybridisation principle. This method was tested on DNA samples extracted from clinical isolates from 160 Colombian patients who were previously phenotypically and genotypically characterised as having susceptible or MDR M. tuberculosis. For our method, the kappa index of the sequencing results was 0,966, 0,825, 0,766, 0,740, and 0,625 forrpoB, katG, inhA,ahpC, and gyrA, respectively. Sensitivity and specificity were ranked between 90-100% compared with those of phenotypic drug susceptibility testing. Our assay helps to pave the way for implementation locally and for specifically adapted methods that can simultaneously detect drug resistance mutations to first and second-line drugs within a few hours.
Resumo:
The objective of the present work was to determine the inheritance and stability of transgenes of a transgenic bean line expressing the genes rep-trap-ren from Bean golden mosaic virus and the bar gene. Crosses were done between the transgenic line and four commercial bean cultivars, followed by four backcrosses to the commercial cultivars. Progenies from each cross were evaluated for the presence of the transgenes by brushing the leaves with glufosinate ammonium and by polymerase chain reaction using specific oligonucleotides. Advanced generations were rub-inoculated with an isolate of Bean common mosaic necrosis virus (BCMNV). The transgenes were inherited consistently in a Mendelian pattern in the four crosses studied. The analyzed lines recovered close to 80% of the characteristics of the recurrent parent, as determined by the random amplified DNA markers used, besides maintaining important traits such as resistance to BCMNV. The presence of the transgene did not cause any detectable undesirable effect in the evaluated progenies.
Resumo:
The impact of biological chromium's activity may be beneficial or not. This review presents the most relevant chemical aspects of these "two faces" of chromium by covering first, the efforts toward a clearer understanding of the carcinogenic properties of chromium compounds. The biomimetic chemistry of Cr(V) complexes illustrates the interactions of the intermediates formed by Cr(VI) reduction with DNA or oligonucleotides. The importance of trivalent chromium as an essential element is also emphasized by summarizing the recent results of the investigations on trinuclear chromium complexes as models of the cofactor responsible for the insulin activity, as well as good candidates for new nutritional supplements.
Resumo:
This paper describes the adsorption of an oligothymidylate (pdT16) on nanoemulsions obtained by spontaneous emulsification procedures. Formulations were composed by medium chain triglycerides, egg lecithin, glycerol, water (NE) and stearylamine (NE SA). After optimization of operating conditions, the mean droplet size was smaller than 255 nm. Adsorption isotherms showed a higher amount of pdT16 adsorbed on cationic NE SA (60 mg/g) compared to NE (20 mg/g). pdT16 adsorption was also evidenced by the inversion of the zeta-potential of NE SA (from +50 to -30 mV) and the morphology of oil droplets examined through transmission electron microscopy. The overall results showed the role of electrostatic interactions on the adsorption of pdT16 on the oil/water interface of nanoemulsions.